一阶数字高通滤波器
本文的主要内容包含一阶高通滤波器公式的推导和数字算法的实现以及编程和仿真
1 计算公式推导


1.1.2 算法实现及仿真
利用python实现的代码如下:
import numpy as np
# from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt
#2pifWc = 2*np.pi*30Tsw = 0.00314 #采样时间
halfdigiW=np.tan(Wc/2*Tsw )b10=1/(halfdigiW+1)
b11=-b10
a10=(1-halfdigiW)/(halfdigiW+1)x=np.linspace(-np.pi,np.pi,2000) #在[-pi,pi]区间上分割正2000个点 可以理解为信号采样时间为 2*pi/2000s
data=np.zeros_like(x) #输入信号 保存被干扰的信号
data1=np.zeros_like(x) #输入信号,保存未被干扰的信号,方便与滤波后的波形进行比较
y1=np.zeros_like(x) #一阶滤波输出
y2=np.zeros_like(x) #二阶滤波输出 陷波:对希望滤除的特定频率有很好的滤除作用
for i in range(len(x)):data[i] =np.sin( 2 * np.pi * x[i])+0.5*np.sin(30* 2 * np.pi * x[i]) #幅值为1频率为 1Hz的低频信号 + 幅值为0.5 频率为30hz的高频信号data1[i]=0.5*np.sin(130* 2 * np.pi * x[i])# y2[i] = b0*data[i]+b1*data[i-1]+a0*y2[i-1]y1[i] = b10 * data[i] + b11 * data[i - 1] + a10 * y1[i - 1]
y2[0] = 0
y2[1] = 0
y1[0] = 0
y1[1] = 0
#绘原始信号 + 滤波后的信号
plt.subplot(2, 1, 1)
plt.plot(x,data ,label='sig+noise')
plt.plot(x,y1, 'r',label='first order HP')#绘制理想信号 + 滤波后的信号
plt.subplot(2, 1, 2)
plt.plot(x,data1 ,label='sig')
plt.plot(x,y1, 'r',label='first order HP')
plt.grid()
plt.legend()
plt.show()
以下是在python中仿真的波形图:

图1-2 fc=0.5Hz

图1-3 fc=2Hz

图1-4 fc=5Hz

图1-5 fc=10Hz

图1-6 fc=20Hz

图1-7 fc=30Hz

图1-8 fc=40Hz

图1-9 fc=60Hz

图1-10 fc=159Hz
输入的信号是幅值为1 频率为 1Hz的低频信号 加上 幅值为0.5 频率为30Hz的高频信号,采样时间为0.003s,从图1-2到图1-10的仿真波形可以看出,当fc为0.5Hz时,滤后的波形有微小的衰减作用,但几乎和原波形一致,当逐渐增大截止频率fc,对低频的滤除结果越来越强,高频越来越接近高频本身的波形,当截止频率高于高频频率时,高频本身也会被滤掉。当截止频率大于等于1/2采样频率时,输出的是一条直线。
利用C语言实现的代码如下:
#ifndef _MHPF1W_F_H_
#define _MHPF1W_F_H_#include <stdint.h>
struct MHpf1W_F
{/*初始化*/struct{void (*Set)(struct MHpf1W_F *self, float cutFreq, int samFreq); //设置截止和采样频率void (*VaryCutFreq)(struct MHpf1W_F *self, float cutFreq); //改变截止频率float cutFreq; //截止频率float samFreq; //采样频率} Init;/*采样计算*/struct{int (*In)(struct MHpf1W_F *self, int Xn);int out_y; //输出值} Prd;/*变量 中间变量 系数等,由初始参数 初始化计算得出*/struct{float Ts; //采样周期int a0, b0, b1; //差分系数int Xn_1, Yn_1;} pri;
};
void MHpf1W_F_Create(struct MHpf1W_F *self);
#endif
//创建方式
// struct MHpf1W_F mlp;
// MHpf1W_F_Create(&mlp);
// mlp.Init.Set(&mlp,2, 1000); fc=20Hz fs=1000Hz#include "MHpf1W_F.h"
#include <string.h>
#include "math.h"static const float PI = 3.1415926535897932384626f;
#define MID(a,min,max) (a= (a<min)?min:(a<max)?a:max)
#define Q15M(a,b) ((a*b)>>15)
/******************************************************************************** 函 数 名 : _Update* 函数功能 : 各系数计算,参数更新* 输入参数 : 滤波器对象 struct MHpf1W_F *self* 返 回 值 : 无*******************************************************************************/
static void _Update(struct MHpf1W_F *self)
{float halfdigiW,tgAnaWT ;halfdigiW = PI * self->Init.cutFreq * self->pri.Ts;tgAnaWT = tan(halfdigiW); //ignore the 1/Tself->pri.b0 = 1/(tgAnaWT+1)*32768; //转成Q15格式self->pri.b1 = -self->pri.b0; //转成Q15格式self->pri.a0 =((1-tgAnaWT)/(tgAnaWT+1))*32768; //转成Q15格式self->pri.Xn_1 = 0;self->pri.Yn_1 = 0;
}
/******************************************************************************** 函 数 名 : InitSet* 函数功能 : 初始化* 输入参数 : cutFreq----截至频率* samFreq----计算机采样频率* 返 回 值 : 无*******************************************************************************/
static void InitSet(struct MHpf1W_F *self, float cutFreq, int samFreq)
{self->Init.cutFreq = MID(cutFreq , 0.0f , samFreq*0.5f);; //截止频率self->Init.samFreq = samFreq; //采样频率self->pri.Ts = 1.0f / self->Init.samFreq; //采样周期 1/Ts_Update(self);
}
/******************************************************************************** 函 数 名 : InitVaryCutF* 函数功能 : 改变截止频率* 输入参数 : cutFreq----截至频率* 返 回 值 : 无*******************************************************************************/
static void InitVaryCutF(struct MHpf1W_F *self, float cutFreq)
{self->Init.cutFreq = cutFreq;_Update(self);
}
/******************************************************************************** 函 数 名 : PrdIn* 函数功能 : 本次输出结果计算* 输入参数 : Xn----本次输入值* 返 回 值 : 本次滤波后的值* 计算公式 :Y(n)=b0*X(n)+b1*X(n-1)+a0*Y(n-1)*******************************************************************************/
static int PrdIn(struct MHpf1W_F *self, int Xn)
{/*Y(n)=b0*X(n)+b1*X(n-1)+b2*X(n-2)+a0*Y(n-1)+a2*Y(n-2)*/self->Prd.out_y = Q15M(self->pri.b0 , Xn ) + \Q15M(self->pri.b1 , self->pri.Xn_1 ) + \Q15M(self->pri.a0 , self->pri.Yn_1 ) ;self->pri.Yn_1 = self->Prd.out_y;self->pri.Xn_1 = Xn;return self->Prd.out_y;
}
/******************************************************************************** 函 数 名 : MHpf1W_F_Create* 函数功能 : 创建对象 初始化* 输入参数 : self对象* 返 回 值 : 无*******************************************************************************/
void MHpf1W_F_Create(struct MHpf1W_F *self)
{memset(self, 0, sizeof(struct MHpf1W_F));self->Init.Set = InitSet;self->Init.VaryCutFreq = InitVaryCutF;self->Prd.In = PrdIn;
}
单片机+匿名科创地面站的软件输出波形如下:

图1-11 fc=0.5Hz

图4-12 fc=2Hz

图1-13 fc=5Hz

图1-14 fc=10Hz

图1-15 fc=20Hz

图1-16 fc=30Hz

图1-17 fc=40Hz

图1-18 fc=60Hz

图1-18 fc=100Hz

图1-18 fc=200Hz

图1-18 fc=500Hz
单片机模拟输入的信号是幅值为1000 频率为 1Hz的低频信号加上幅值为500 频率为30Hz的高频信号,采样时间为0.001s,从图1-11到图1-18的波形可以看出,输出变化的规律现象和python仿真的规律和现象是一致的,同样当截止频率大于等于1/2采样频率时,输出的是一条直线。
相关文章:
一阶数字高通滤波器
本文的主要内容包含一阶高通滤波器公式的推导和数字算法的实现以及编程和仿真 1 计算公式推导 1.1.2 算法实现及仿真 利用python实现的代码如下: import numpy as np # from scipy.signal import butter, lfilter, freqz import matplotlib.pyplot as plt #2pifW…...
Linux多线程系列2: 模拟封装简易语言级线程库,线程互斥和锁,线程同步和条件变量,线程其他知识点
Linux多线程系列2: 模拟封装简易语言级线程库,线程互斥和互斥锁,线程同步和条件变量,线程其他知识点 1.前言 一.模拟C11线程库自己封装简易语言级线程库1.实现框架2.迅速把构造等等函数写完3.start和work1.尝试一2.尝试二3.最终版本4.给出代码 二.模拟实现多线程(为编写线程池做…...
VUE3-form表单保存附件与基本信息
element-ui代码 <el-dialog :title"上传附件" v-model"dialogAdds.visible" width"500px" append-to-body> <el-form-item label"唯一标识"> <dict-tag v-if"form.groupId" :options"unique_identifica…...
无线网络安全技术基础
无线网络安全技术基础 无线网络安全风险和隐患 随着无线网络技术广泛应用,其安全性越来越引起关注.无线网络的安全主要有访问控制和数据加密,访问控制保证机密数据只能由授权用户访问,而数据加密则要求发送的数据只能被授权用户所接受和使用。 无线网络在数据传输时以微波进…...
sheng的学习笔记-docker部署Greenplum
目录 docker安装gp数据库 mac版本 搭建gp数据库 连接数据库 windows版本 搭建gp数据库 连接数据库 docker安装gp数据库 mac版本 搭建gp数据库 打开终端,输入代码,查看版本 ocker search greenplum docker pull projectairws/greenplum docker…...
【投稿资讯】区块链会议CCF A -- SP 2025 截止6.6、11.14 附录用率
会议名称:46th IEEE Symposium on Security and Privacy( S&P) CCF等级:CCF A类学术会议 类别:网络与信息安全 录用率:2023年 195/1147,2024年录用了17篇和区块链相关的论文 Topics of interest inc…...
C++哪些函数不能被声明为虚函数
在C中,某些函数不能被声明为虚函数。下面详细解释哪些函数不能被声明为虚函数,并通过代码示例进行说明。 C哪些函数不能被声明为虚函数 不能声明为虚函数的函数示例代码及解释一、构造函数不能是虚函数二、静态成员函数不能是虚函数三、友元函数不能是虚…...
vue中数据已经改变了,但是table里面内容没更新渲染!
解决方案: 给table或者el-table标签上添加一个动态key值,只要数据发生改变,key值变动一下即可 标签上: :key“timeStamp” 初始data:timeStamp:0, 更新数据:this.timeStamp 这样每次更新数据ÿ…...
头歌实践教学平台:Junit实训入门篇
第2关:Junit注解 任务描述 给出一个带有注解的Junit代码及其代码打印输出,要求学员修改注解位置,让输出结果变为逆序。 相关知识 Junit注解 Java注解((Annotation)的使用方法是" 注解名" 。借助注解&a…...
matlab使用教程(80)—修改图形对象的透明度
1.更改图像、填充或曲面的透明度 此示例说明如何修改图像、填充或曲面的透明度。 1.1坐标区框中所有对象的透明度 透明度值称为 alpha 值。使用 alpha 函数设置当前坐标区范围内所有图像、填充或曲面对象的透明度。指定一个介于 0(完全透明)和 1&#x…...
mysql bin 日志转成sql
首先确定mysql binlog 服务开启 SHOW VARIABLES LIKE log_bin; 找到binlog日志 find / -name mysql-bin.* -type f 下载下来 本地找到mysql安装位置的bin目录 在窗口路径处直接输入cmd 执行 mysqlbinlog --no-defaults --base64-outputdecode-rows -v --start-datetime&…...
河南道路与桥梁乙级资质申请:注册证书与职称证书准备
在河南道路与桥梁乙级资质申请中,注册证书与职称证书的准备是不可或缺的环节。以下是关于如何准备这些证书的一些关键步骤和要点: 明确所需证书类型: 注册证书:这通常指的是相关专业的注册工程师证书,如注册土木工程师…...
3D工业视觉
前言 本文主要介绍3D视觉技术、工业领域的应用、市场格局等,主要技术包括激光三角测量、结构光、ToF、立体视觉。 一、核心内容 3D视觉技术满足工业领域更高精度、更高速度、更柔性化的需求,扩大工业自动化的场景。 2D视觉技术基于物体平面轮廓&#…...
使用auth_basic模块进行基础认证
在建立和维护Web服务器时,身份认证是一个至关重要的环节。Nginx作为一个高性能的Web服务器,支持许多认证方法,其中较为简单和常用的一种即是基础身份认证(Basic Authentication),这需要借助auth_basic模块实…...
深度解析物联网平台:优化数据点位管理的实战策略
策略管理 策略,作为在物联网平台数据点位创建过程中可设定的规则,涵盖了多个重要方面,策略是在创建点位的时候,可以设置的规则,包括存储策略、告警策略、通知策略以及联动策略。这些策略都是通过专门的列表页面进行集…...
Spring常见问题
如何理解spring属于低侵入式设计? 在代码中不需要写明具体依赖对象,在运行时进行自动注入,降低了组件的耦合依赖的是接口,而接口的实现类具有拓展性 Spring IOC 实现了什么功能,谈谈你对IOC的理解。 负责创建对象&…...
MiniMax Golang2轮面试,期望薪资25K
一面 1、自我介绍 2、简单介绍一下你们成立了这个finance的财务中台之后,整体的服务架构是怎么样的吗? 3、就你提到的预算池项目,展开说说背景,以及解决了怎么样的问题? 4、为什么采用针对T-1订单的异步计算方案&a…...
MyBatis系统学习篇 - MyBatis的缓存
MyBatis的缓存实现原理主要基于三级缓存机制,包括一级缓存(本地缓存)、二级缓存(全局缓存)和三级缓存(跨会话缓存)。这个缓存在我们实际开发中可以避免我们查询重复的数据,在一定程度…...
K-means聚类模型
目录 1.定义 2.K-means聚类模型的优点 3.K-means聚类模型的缺点 4.K-means聚类模型的应用场景 5.对K-means聚类模型未来的展望 6.小结 1.定义 什么是 K-means 聚类模型?K-means 聚类模型是一种无监督学习算法,用于将数据划分为不同的组或簇&#…...
免费分享一套微信小程序旅游推荐(智慧旅游)系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】,帅呆了~~
大家好,我是java1234_小锋老师,看到一个不错的微信小程序旅游推荐(智慧旅游)系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序旅游推荐(智慧旅游)系统(SpringBoot后端Vue管理端) Java毕业设计…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
