Pod进阶——资源限制以及探针检查
目录
一、资源限制
1、资源限制定义:
2、资源限制request和limit资源约束
3、Pod和容器的资源请求和限制
4、官方文档示例
5、CPU资源单位
6、内存资源单位
7、资源限制实例
①编写yaml资源配置清单
②释放内存(node节点,以node01为例子)
③注意:
④创建资源
⑤跟踪查看pod状态
⑥查看容器日志
⑦删除pod
⑧修改yaml配置资源清单,提高mysql资源限制
⑨然后再次创建资源
⑩跟踪查看pod状态
11查看pod详细信息
12查看node01节点的详细信息
二、健康检查
1、健康检查的定义
2、探针的三种规则
①livenessProbe存活探针
②readinessProbe就绪探针
③startupProbe启动探针(1.17版本新增)
④注意:
3、Probe支持三种检查方法:
①exec:
②tcpSocket:
③httpGet:
4、探测结果
5、exec方式
示例2、
6、httpGet方式
示例2、
7、tcpSocket方式
三、总结
1、探针
2、检查方式
3、常用的探针可选参数
四、拓展
1、Pod的状态
2、Container生命周期
一、资源限制
1、资源限制定义:
当定义Pod时可以选择性的为每个容器设定所需要的资源数量。最常见的可设定资源是CPU和内存大小,以及其他类型的资源。
2、资源限制request和limit资源约束
①当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。
②如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。
③如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。
3、Pod和容器的资源请求和限制
官方示例网站:Resource Management for Pods and Containers | Kubernetes
定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.cpu
定义创建容器时预分配的内存资源
spec.containers[].resources.requests.memory
定义创建容器时预分配的巨页资源
spec.containers[].resources.requests.hugepages-<size>
定义cpu的资源上限
spec.containers[].resources.limits.cpu
定义内存的资源上限
spec.containers[].resources.limits.memory
定义巨页的资源上限
spec.containers[].resources.limits.hugepages-<size>
4、官方文档示例
apiVersion: v1
kind: Pod
metadata:name: frontend
spec:containers:- name: appimage: images.my-company.example/app:v4env:- name: MYSQL_ROOT_PASSWORDvalue: "password"resources:requests:memory: "64Mi"cpu: "250m"limits:memory: "128Mi"cpu: "500m"- name: log-aggregatorimage: images.my-company.example/log-aggregator:v6resources:requests:memory: "64Mi"cpu: "250m"limits:memory: "128Mi"cpu: "500m"
Pod有两个Container。每个Container 的请求为 0.25 cpu 和 64MiB(226 字节)内存, 每个容器的资源约束为 0.5 cpu 和 128MiB 内存。 你可以认为该 Pod 的资源请求为 0.5 cpu 和 128 MiB 内存,资源限制为 1 cpu 和 256MiB 内存。
5、CPU资源单位
CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的 、一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。
6、内存资源单位
内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB
注意:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。
7、资源限制实例
①编写yaml资源配置清单
[root@master ~]# mkdir /opt/test
[root@master ~]# cd /opt/test
[root@master test]# vim test1.yamlapiVersion: v1
kind: Pod
metadata:name: test1
spec:containers:- name: webimage: nginxenv:- name: WEB_ROOT_PASSWORDvalue: "password"resources:requests:memory: "64Mi"cpu: "250m"limits:memory: "128Mi"cpu: "500m"- name: dbimage: mysqlenv:- name: MYSQL_ROOT_PASSWORDvalue: "password"resources:requests:memory: "64Mi"cpu: "250m"limits:memory: "128Mi"cpu: "500m"
②释放内存(node节点,以node01为例子)
由于mysql对于内存的使用要求较高,因此需要先检查内存的可用空间是否能够满足mysql的正常运行,若剩余内存不够,可以对其进行操作释放。
查看内存
free -mh
内存总量为3.7G,实际使用1.1G,因此可有内存应该为2.6G左右。但是由于有1.4G的内存被用于缓存,free为1.2G。所以不需要释放内存。
这里可以手动释放缓存
echo [1\2\3] > /proc/sys/vm/drop_caches
0:0是系统默认值,默认情况下表示不释放内存,由操作系统自动管理
1:释放页缓存
2:释放dentries和inodes
3:释放所有缓存
③注意:
如果因为是应用有像内存泄露、溢出的问题,从swap的使用情况是可以比较快速可以判断的,但free上面反而比较难查看。相反,如果在这个时候,我们告诉用户,修改系统的一个值,“可以”释放内存,free就大了。用户会怎么想?不会觉得操作系统“有问题”吗?所以说,既然核心是可以快速清空buffer或cache,也不难做到(这从上面的操作中可以明显看到),但核心并没有这样做(默认值是0),我们就不应该随便去改变它。
一般情况下,应用在系统上稳定运行了,free值也会保持在一个稳定值的,虽然看上去可能比较小。当发生内存不足、应用获取不到可用内存、OOM错误等问题时,还是更应该去分析应用方面的原因,如用户量太大导致内存不足、发生应用内存溢出等情况,否则,清空buffer,强制腾出free的大小,可能只是把问题给暂时屏蔽了。
④创建资源
kubectl apply -f tets1.yaml
⑤跟踪查看pod状态
kubectl get pod -o wide -w
OOM(OverOfMemory)表示服务的运行超过了我们所设定的约束值。
Ready:2/2,status:Running说明该pod已成功创建并运行,但运行过程中发生OOM问题被kubelet杀死并重新拉起新的pod。
⑥查看容器日志
kubectl logs test1 -c web
nginx启动正常,然后查看mysql日志
kubectl logs test1 -c db
容器问题为mysql
⑦删除pod
kubectl delete -f test1.yaml
⑧修改yaml配置资源清单,提高mysql资源限制
[root@master test]# vim test1.yaml apiVersion: v1
kind: Pod
metadata: name: test1
spec: containers: - name: web image: nginx env: - name: WEB_ROOT_PASSWORD value: "password" resources: requests: memory: "64Mi" cpu: "250m" limits: memory: "128Mi" cpu: "500m" - name: db image: mysql env: - name: MYSQL_ROOT_PASSWORD value: "password" resources: requests: memory: "512Mi" cpu: "0.5" limits: memory: "1024Mi" cpu: "1"
⑨然后再次创建资源
kubectl apply -f test1.yaml
⑩跟踪查看pod状态
kubectl get pod -o wide -w
11查看pod详细信息
[root@k8s test]# kubectl describe pod test1
12查看node01节点的详细信息
kubectl describe nodes node01
二、健康检查
1、健康检查的定义
健康检查:又称为探针(Probe),探针是由kubelet对容器执行的定期诊断。
2、探针的三种规则
①livenessProbe存活探针
判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。
②readinessProbe就绪探针
判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。
③startupProbe启动探针(1.17版本新增)
判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
④注意:
以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。
3、Probe支持三种检查方法:
①exec:
在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。
②tcpSocket:
对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。
③httpGet:
对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的
4、探测结果
每次探测都将获得一下三种结果之一:
①成功:容器通过了诊断
②失败:容器未通过诊断
③未知:诊断失败,因此不会采取任何行动
5、exec方式
vim exec.yamlapiVersion: v1
kind: Pod
metadata:labels:test: liveness #为了健康检查定义的标签name: liveness-exec
spec: #定义了Pod中containers的属性containers:- name: livenessimage: busyboxargs: #传入的命令- /bin/sh- -c- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy;sleep 600livenessProbe:exec:command:- cat- /tmp/healthyinitialDelaySeconds: 5 #表示pod中容器启动成功后,多少秒后进行健康检查 periodSeconds: 5 #在首次健康检查后,下一次健康检查的间隔时间 5s
在配置文件中,可以看到Pod具有单个Container。该perioSeconds字段指定kubelet应该每5秒执行一次活动性探测。该initiaDelaySeconds字段告诉kubelet在执行第一个探测之前应该等待5秒。为了执行探测,kubelet cat /tmp/healthy在容器中执行命令。如果命令成功执行,则返回0,并且kubelet认为Container仍然重要。如果命令返回非0值,则kubelet将杀死Container并重启它。
①在这个配置文件中,可以看到Pod只有一个容器。
②容器中的command字段表示创建一个/tmp/live文件后休眠30秒,休眠结束后删除该文件,并休眠10分钟。
③仅使用livenessProbe存活探针,并使用exec检查方式,对/tmp/live文件进行存活检测。
④initialDelaySeconds字段表示kubelet在执行第一次探测前应该等待5秒。
⑤periodSeconds字段表示kubelet每隔5秒执行一次存活探测。
示例2、
vim exec.yaml
apiVersion: v1
kind: Pod
metadata:name: liveness-execnamespace: default
spec:containers:- name: liveness-exec-containerimage: busyboximagePullPolicy: IfNotPresentcommand: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]livenessProbe:exec:command: ["test","-e","/tmp/live"]initialDelaySeconds: 1periodSeconds: 3kubectl create -f exec.yamlkubectl describe pods liveness-exec
6、httpGet方式
vim httpGet.yaml
apiVersion: v1
kind: Pod
metadata:labels:test: livenessname: liveness-http
spec:containers:- name: livenessimage: k8s.gcr.io/livenessargs:- /serverlivenessProbe:httpGet:path: /healthzport: 8080httpHeaders:- name: Custom-Headervalue: AwesomeinitialDelaySeconds: 3periodSeconds: 3
在配置文件中,可以看到Pod具有单个Container。该periodSeconds字段指定kubectl应该每3秒执行一次活动性探测。该initiaDelaySeconds字段告诉kubelet在执行第一个探测之前应等待3秒。为了执行探测,kubectl将HTTP GET请求发送到Container中运行并在端口8080上侦听的服务器。如果服务器/healthz路径的处理程序返回成功代码,则kubectl会认为任何大于或等于400的代码均表示成功,其他代码都表示失败。
示例2、
apiVersion: v1
kind: Pod
metadata:name: liveness-httpgetnamespace: default
spec:containers:- name: liveness-httpget-containerimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80livenessProbe:httpGet:port: httppath: /index.htmlinitialDelaySeconds: 1periodSeconds: 3timeoutSeconds: 10
kubectl create -f httpget.yamlkubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.htmlkubectl get pods
httpget http://IP:80/index.html delay 延迟 =3 tomout=10s period(频率)=3s succes(成功)=1 faulure(失败)=3 机会 杀死容器
7、tcpSocket方式
定义TCP活动度探针
第三种类型的活动性探针使用TCP套接字,使用此配置,kubelet将尝试在指定端口上打开容器的套接字。如果可以建立连接,则认为该让其运行状况良好,如果不能,则认为该容器是故障容器。
apiVersion: v1
kind: Pod
metadata:name: goproxylabels:app: goproxy
spec:containers:- name: goproxyimage: k8s.gcr.io/goproxy:0.1ports:- containerPort: 8080readinessProbe:tcpSocket:port: 8080initialDelaySeconds: 5periodSeconds: 10livenessProbe:tcpSocket:port: 8080initialDelaySeconds: 15periodSeconds: 20
如图所示,TCP检查的配置与HTTP检查非常相似,此示例同时使用就绪和活跃度探针,容器启动5秒后,kubelet将发送第一个就绪探测器。这些尝试连接到goproxy端口8080上的容器。如果探测成功,则容器将标记为就绪,kubelet将继续每10秒运行一次检查。
除了就绪探针之外,此配置还包括活动探针。容器启动后15秒钟,kubelet将运行第一个活动谈着,就像就绪探针一样,这些尝试goproxy在端口8080上连接到容器。如果活动探针失败,则容器将重新启动。
三、总结
1、探针
①livenessProbe(存活探针)∶判断容器是否正常运行,如果失败则杀掉容器(不是pod),再根据重启策略是否重启容器
②readinessProbe(就绪探针)∶判断容器是否能够进入ready状态,探针失败则进入noready状态,并从service的endpoints中剔除此容器
③startupProbe∶判断容器内的应用是否启动成功,在success状态前,其它探针都处于无效状态
2、检查方式
①exec∶使用 command 字段设置命令,在容器中执行此命令,如果命令返回状态码为0,则认为探测成功
②httpget∶通过访问指定端口和url路径执行http get访问。如果返回的http状态码为大于等于200且小于400则认为成功
③tcpsocket∶通过tcp连接pod(IP)和指定端口,如果端口无误且tcp连接成功,则认为探测成功
3、常用的探针可选参数
①initialDelaySeconds∶ 容器启动多少秒后开始执行探测
②periodSeconds∶探测的周期频率,每多少秒执行一次探测
③failureThreshold∶探测失败后,允许再试几次
④timeoutSeconds ∶ 探测等待超时的时间
四、拓展
1、Pod的状态
①pending:
pod已经被系统认可了,但是内部的container还没有创建出来。这里包含调度到node上的时间以及下载镜像的时间,会持续一小段时间。
②Running:
pod已经与node绑定了(调度成功),而且pod中所有的container已经创建出来,至少有一个容器在运行中,或者容器的进程正在启动或者重启状态。--这里需要注意pod虽然已经Running了,但是内部的container不一定完全可用。因此需要进一步检测container的状态。
③Succeeded:
这个状态很少出现,表明pod中的所有container已经成功的terminated了,而且不会再被拉起了。
④Failed:
pod中的所有容器都被terminated,至少一个container是非正常终止的。(退出的时候返回了一个非0的值或者是被系统直接终止)
⑤unknown:
由于某些原因pod的状态获取不到,有可能是由于通信问题。 一般情况下pod最常见的就是前两种状态。而且当Running的时候,需要进一步关注container的状态
2、Container生命周期
①Waiting:启动到运行中间的一个等待状态。
②Running:运行状态。
③Terminated:终止状态。 如果没有任何异常的情况下,container应该会从Waiting状态变为Running状态,这时容器可用。
但如果长时间处于Waiting状态,container会有一个字段reason表明它所处的状态和原因,如果这个原因很容易能标识这个容器再也无法启动起来时,例如ContainerCannotRun,整个服务启动就会迅速返回。(这里是一个失败状态返回的特性,不详细阐述)
相关文章:

Pod进阶——资源限制以及探针检查
目录 一、资源限制 1、资源限制定义: 2、资源限制request和limit资源约束 3、Pod和容器的资源请求和限制 4、官方文档示例 5、CPU资源单位 6、内存资源单位 7、资源限制实例 ①编写yaml资源配置清单 ②释放内存(node节点,以node01为…...

XSS---DOM破坏
文章目录 前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 一.什么是DOM破坏 在HTML中,如果使用一些特定的属性名(如id或name)给DOM元素命名,这些属性会在全局作用域中创建同名的全局变量,指向对…...
2024电工杯数学建模B 题:大学生平衡膳食食谱的优化设计
背景: 大学时代是学知识长身体的重要阶段, 同时也是良好饮食习惯形成的重要时期。这一特 定年龄段的年轻人, 不仅身体发育需要有充足的能量和各种营养素, 而且繁重的脑力劳动和 较大量的体育锻炼也需要消耗大量的能源物质。 大学生…...
LeetCode 1542.找出最长的超赞子字符串:前缀异或和(位运算)
【LetMeFly】1542.找出最长的超赞子字符串:前缀异或和(位运算) 力扣题目链接:https://leetcode.cn/problems/find-longest-awesome-substring/ 给你一个字符串 s 。请返回 s 中最长的 超赞子字符串 的长度。 「超赞子字符串」需…...
LLM企业应用落地场景中的问题概览
三个问题 AI思维快速工具:需要对接LLM的API、控制幻觉、管理知识库。POC验证四个难点 私有化部署的环境:包括网络和服务器环境。交互友好意想不到的情况方向选择:让客户做目标和方向的选择问题 一、RAG 多跳问题 通常发生在报告编写的数据整理环节,比如要从一堆报表中找…...

基于灰狼优化算法优化支持向量机(GWO-SVM)时序预测
代码原理及流程 基于灰狼优化算法优化支持向量机(GWO-SVM)的时序预测代码的原理和流程如下: 1. **数据准备**:准备时序预测的数据集,将数据集按照时间顺序划分为训练集和测试集。 2. **初始化灰狼群体和SVM模型参数…...

C++中获取int最大与最小值
不知道大家有没有遇到过这种要求:“返回值必须是int,如果整数数超过 32 位有符号整数范围 [−2^31, 2^31 − 1] ,需要截断这个整数,使其保持在这个范围内。例如,小于 −2^31 的整数应该被固定为 −2^31 ,大…...

学习通高分免费刷课实操教程
文章目录 概要整体架构流程详细步骤云上全平台登录步骤小结 概要 我之前提到过一个通过浏览器的三个脚本就可以免费高分刷课的文章,由于不方便拍视频进行实操演示,然后写下了这个实操教程,之前的三个脚本划到文章末尾 整体架构流程 整体大…...

缓存降级
当Redis缓存出现问题或者无法正常工作时,需要有一种应对措施,避免直接访问数据库而导致整个系统瘫痪。缓存降级就是这样一种机制。 主要的缓存降级策略包括: 本地缓存降级 当Redis缓存不可用时,可以先尝试使用本地进程内缓存,如Guava Cache或Caffeine等。这样可以减少对Redis…...

PyQt6--Python桌面开发(32.QMenuBar菜单栏控件)
QMenuBar菜单栏控件 选择Main Window...

golang创建式设计模式---工厂模式
创建式设计模式—工厂模式 目录导航 创建式设计模式---工厂模式1)什么是工厂模式2)使用场景3)实现方式4)实践案例5)优缺点分析 1)什么是工厂模式 工厂模式(Factory Method Pattern)是一种设计模式,旨在创建对象时,将对象的创建与使用进行分离。通过定义…...
高精度定位平板主要应用在哪些领域
高精度定位平板是一种集成了高精度定位技术和强大计算能力的设备,能够提供亚米级甚至厘米级的定位精度。其应用领域广泛,涵盖测绘、精准农业、工程建设、地理信息系统(GIS)、公共安全等多个方面。这种设备凭借其高精度和耐用性&am…...
conda使用常用命令
Conda是一个非常常用的Python包管理器,也是Anaconda Python发行版的一部分。它可以帮助用户安装、更新、卸载Python包,以及管理Python虚拟环境。在这篇博客中,我们将总结一些常用的Conda命令及其用法。 安装和更新Conda 在使用Conda之前&…...

22-LINUX--多线程and多进程TCP连接
一.TCP连接基础知识 1.套接字 所谓套接字(Socket),就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象。一个套接字就是网络上进程通信的一端,提供了应用层进程利用网络协议交换数据的机制。从所处的地位来讲,套接字上联应用进程…...

像素级创意:深入浅出PixelCNN图像合成技术
参考 https://arxiv.org/pdf/1601.06759 https://blog.csdn.net/zcyzcyjava/article/details/126559327 需要熟悉熵的一些理论、和极大释然估计等价于最小化交叉熵等知识 1. pixelcnn建模方法 pixelcnn做生成模型的想必都有耳闻。它是一种自回归模型,什么是自回归…...

MyBatisPlus使用流程
引入依赖 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.4</version> </dependency> 版本号根据需要选取 在实体类上加注解声明,表信息 根据数…...

爬虫技术升级:如何结合DrissionPage和Auth代理插件实现数据采集
背景/引言 在大数据时代,网络爬虫技术已经成为数据收集的重要手段之一。爬虫技术可以自动化地从互联网上收集数据,节省大量人力和时间成本。然而,当使用需要身份验证的代理服务器时,许多现有的爬虫框架并不直接支持代理认证。这就…...

go 微服务框架kratos错误处理的使用方法及原理探究
通过go语言原生http中响应错误的实现方法,逐步了解和使用微服务框架 kratos 的错误处理方式,以及探究其实现原理。 一、go原生http响应错误信息的处理方法 处理方法: ①定义返回错误信息的结构体 ErrorResponse // 定义http返回错误信息的…...

AI播客下载:Dwarkesh Podcast(关于AI的深度访谈)
Dwarkesh Podcast 是由 Dwarkesh Patel 主持的播客,专注于深度访谈和探讨各种复杂且有趣的话题。该播客在业界获得了极高的评价,被认为是对话和思想交流的平台。 Dwarkesh Podcast 的内容涵盖了多个领域,包括经济学、哲学以及科技等。例如&am…...
C++11function包装器的使用
类模板std::function是一种通用、多态的函数包装。std::function的实例可以对任何可以调用的目标实体进行存储、 复制和调用操作。这些目标实体包括普通函数、Lambda表达式、函数指针、以及其他函数对象等。std::function对象是对 C中现有的可调用实体的一种类型安全的包裹&…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...

AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...