当前位置: 首页 > news >正文

每周题解:繁忙的都市

题目链接

繁忙的都市

题目描述

城市 C 是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市 C 的道路是这样分布的:城市中有 n n n 个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

  1. 改造的那些道路能够把所有的交叉路口直接或间接的连通起来。
  2. 在满足要求 1 的情况下,改造的道路尽量少。
  3. 在满足要求 1、2 的情况下,改造的那些道路中分值最大的道路分值尽量小。

任务:作为市规划局的你,应当作出最佳的决策,选择哪些道路应当被修建。

输入格式

第一行有两个整数 n , m n,m n,m 表示城市有 n n n 个交叉路口, m m m 条道路。

接下来 m m m 行是对每条道路的描述, u , v , c u, v, c u,v,c 表示交叉路口 u u u v v v 之间有道路相连,分值为 c c c

输出格式

两个整数 s , m a x s, \mathit{max} s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

样例 #1

样例输入 #1

4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8

样例输出 #1

3 6

提示

数据范围及约定

对于全部数据,满足 1 ≤ n ≤ 300 1\le n\le 300 1n300 1 ≤ c ≤ 1 0 4 1\le c\le 10^4 1c104 1 ≤ m ≤ 8000 1 \le m \le 8000 1m8000

算法思想

根据题目描述,道路改造后所有交叉路口依然保持连通,改造的道路尽量少,并且改造的那些道路中分值最大的道路分值尽量小。

为了保证改造后依旧是连通的,可以在图中生成一棵树,也就是选择 n − 1 n-1 n1条边使图依然保持连通,并且此时改造的道路最少。

那么如何保证分值最大的那条道路分值尽量小呢?这里有两种思路。

二分答案

求分值最大的那条道路分值最小,通常可以用二分答案来解决。基本思想是:

  • 对所有边按边权从小到大排序
  • 1 ∼ m 1\sim m 1m中选择中间位置 m i d mid mid,检查用 1 ∼ m i d 1\sim mid 1mid的所有边能否将 n n n个交叉路口连接起来
    • 如果能够连通,再到 1 ∼ m i d 1\sim mid 1mid查找答案
    • 否则不能连通,再到 m i d + 1 ∼ m mid+1\sim m mid+1m查找答案

检查过程中,可以使用并查集的思想来统计连通块中点的个数,判断是否通过若干条边将 n n n个点连接起来。

时间复杂度

将所有边排序的排序时间复杂度为 O ( m l o g m ) O(mlogm) O(mlogm),二分答案的时间复杂度为 O ( m l o g m ) O(mlogm) O(mlogm)

代码实现

#include <bits/stdc++.h>
using namespace std;
const int M = 16005;
struct E {int a, b, c;bool operator < (const E &e) const{return c < e.c;}
}e[M];
int n, m, p[M];
int find(int x)
{if(x != p[x]) p[x] = find(p[x]);return p[x];
}
bool check(int mid)
{for(int i = 1; i <= mid; i ++) p[i] = i; //并查集初始化int cnt = 1; //连通块中的点数初始化为1for(int i = 1; i <= mid; i ++){int a = e[i].a, b = e[i].b, c = e[i].c;a = find(a), b = find(b);if(a != b) //如果a和b不连通,则将它们连通起来{p[a] = b;cnt ++; //连通块的点数+1}}return cnt == n; //如果连通块中的点数为n,说明所有点连通起来了
}
int main()
{cin >> n >> m;for(int i = 1; i <= m; i ++){int a, b, c;cin >> a >> b >> c;e[i] = {a, b, c};}sort(e + 1, e + m + 1);int L = 1, R = m;while(L < R){int mid = (L + R) / 2;if(check(mid)) R = mid;else L = mid + 1;}cout << n - 1 << " " << e[L].c << endl;return 0;
}

最小生成树

与一般意义的(所有边权和最小的)最小生成树不同,本题中要求的是最大的边权最小的最小生成树。考虑使用Kruskal算法求最小生成树的基本思想:

  • 将所有边按边权从小到大排序
  • 从小到大依次枚举每条边, a , b , c a, b, c a,b,c,其中边权为 c c c
    • 如果 a a a b b b已经连通,那么直接跳过
    • 如果 a a a b b b不连通,那么就将当前边选出来,将 a a a b b b纳入一个连通块
  • 当所有点都在同一个连通块时,最小生成树建立完毕。

在这个过程中,由于边权是按从小到大排序的,因此连通最后一个点所使用的边,就是生成树中边权最大的边。

由此可见,Kruskal 算法求出的最小生成树,不但总权值和最小,而且最大边的边权一定是所有的生成树最大边中最小的。

时间复杂度

将所有边排序的排序时间复杂度为 O ( m l o g m ) O(mlogm) O(mlogm),Kruskal时间复杂度为 O ( m ) O(m) O(m)

代码实现

#include <bits/stdc++.h>
using namespace std;
const int M = 16005;
struct E {int a, b, c;bool operator < (const E &e) const{return c < e.c;}
}e[M];
int n, m, p[M];
int find(int x)
{if(x != p[x]) p[x] = find(p[x]);return p[x];
}int main()
{cin >> n >> m;for(int i = 1; i <= m; i ++){int a, b, c;cin >> a >> b >> c;e[i] = {a, b, c};}sort(e + 1, e + m + 1);for(int i = 1; i <= m; i ++) p[i] = i;int ans;for(int i = 1; i <= m; i ++){int a = find(e[i].a), b = find(e[i].b), c = e[i].c;if(a != b) {p[a] = b;ans = c;}}cout << n - 1 << " " << ans << endl;return 0;
}

相关文章:

每周题解:繁忙的都市

题目链接 繁忙的都市 题目描述 城市 C 是一个非常繁忙的大都市&#xff0c;城市中的道路十分的拥挤&#xff0c;于是市长决定对其中的道路进行改造。城市 C 的道路是这样分布的&#xff1a;城市中有 n n n 个交叉路口&#xff0c;有些交叉路口之间有道路相连&#xff0c;两…...

linux之防火墙工具

netfilter Linux防火墙是由Netfilter组件提供的&#xff0c;Netfilter工作在内核空间&#xff0c;集成在linux内核中。 Netfilter在内核中选取五个位置放了五个hook(勾子) function(INPUT、OUTPUT、FORWARD、PREROUTING、POSTROUTING)&#xff0c;而这五个hook function向用户…...

【Python】—— 高阶函数

目录 &#xff08;一&#xff09;体验高阶函数 &#xff08;二&#xff09;内置高阶函数 2.1 map(&#xff09; 2.2 reduce() 2.3 filter() Python中的高阶函数是指那些接受函数作为参数&#xff0c;或者返回函数作为结果的函数。这种特性让Python的函数编程能力非常强大&…...

逻辑分析仪 - 采样率/采样深度

采样深度&#xff08;Sampling Depth&#xff09; 采样深度指的是逻辑分析仪在一次捕获过程中可以记录的最大样本数量。简单来说&#xff0c;采样深度越大&#xff0c;逻辑分析仪可以记录的数据量就越多。这对于分析长时间的信号变化或复杂的信号序列非常重要。 采样率&#…...

【Maven打包将resources/lib/下的jar也打包进jar包中】

Maven打包将resources/lib/下的jar也打包进jar包中 &#xff01;&#xff01;&#xff01;少走弯路 第一步 resources/lib/下引入jar ftp4j-1.7.2.jar替换为自己jar包的名称 <dependency><groupId>it.sauronsoftware.ftp4j</groupId><artifactId>ft…...

基于Java的地震震中附近城市分析实战

目录 前言 一、空间数据说明 1、空间查询 二、Java后台开发 1、模型层设计与实现 2、控制层设计与实现 三、Leaflet地图开发 1、地震震中位置展示 2、附近城市展示 3、成果展示 总结 前言 随着全球气候变化和地壳活动的不断演变&#xff0c;地震作为一种自然灾害&…...

【C语言】指针(三)

目录 一、字符指针 1.1 ❥ 使用场景 1.2 ❥ 有关字符串笔试题 二、数组指针 2.1 ❥ 数组指针变量 2.2 ❥ 数组指针类型 2.3 ❥ 数组指针的初始化 三、数组指针的使用 3.1 ❥ 二维数组和数组名的理解 3.2 ❥ 二维数组传参 四、函数指针 4.1 ❥ 函数的地址 4.2 ❥ 函数…...

【Linux】从零开始认识进程间通信 —— 管道

送给大家一句话&#xff1a; 人要成长&#xff0c;必有原因&#xff0c;背后的努力与积累一定数倍于普通人。所以&#xff0c;关键还在于自己。 – 杨绛 从零开始认识进程间通信 1 为什么要进程间通信2 进程如何通信3 进程通信的常见方式4 管道4.1 什么是管道4.2 管道通信的系…...

Top3专业课150满分,怎么考的?

这个系列会邀请上岸学长学姐进行经验分享~ 今天经验分享的同学是小马哥上海交大819的全程班学员&#xff0c;专业课150分满分&#xff0c;这位同学也是819期末考试的第一名&#xff0c;非常厉害&#xff01;大家吸吸欧气&#xff01; 初试成绩单 前言 先介绍下自己&#xff0…...

Windows Presentation Foundation(WPF)要点总结

Windows Presentation Foundation&#xff08;WPF&#xff09;是微软推出的一种用于构建Windows桌面应用程序的框架。自从WPF在.NET Framework 3.0中引入以来&#xff0c;它以其强大的功能和灵活性&#xff0c;逐渐成为开发人员构建现代、富用户界面应用程序的首选。本文将概述…...

【研发日记】嵌入式处理器技能解锁(一)——多任务异步执行调度的三种方法

文章目录 前言 Timer中断调度 Event中断调度 StateFlow调度 分析和应用 总结 参考资料 前言 近期在一些嵌入式系统开发项目中&#xff0c;在使用嵌入式处理器时&#xff0c;遇到了挺多费时费力的事情。所以利用晚上和周末时间&#xff0c;在这些方面深入研究了一下&…...

揭秘Python的魔法:装饰器的超能力大揭秘 ‍♂️✨

文章目录 Python进阶之装饰器详解1. 引言装饰器的概念与意义装饰器在Python编程中的作用 2. 背景介绍2.1 函数作为对象2.2 高阶函数 3. 装饰器基础3.1 理解装饰器3.2 装饰器的工作原理 4. 带参数的装饰器4.1 为什么需要带参数4.2 实现带参数的装饰器使用函数包裹装饰器使用类实…...

怎么一键消除路人?教你三个消除方法

怎么一键消除路人&#xff1f;在数字时代&#xff0c;摄影已成为我们记录生活、表达情感的重要方式。然而&#xff0c;完美的照片背后往往隐藏着一些不那么完美的元素——比如那些不经意间闯入镜头的路人。他们或许只是匆匆过客&#xff0c;但却足以破坏你精心构图的美好瞬间。…...

Android Settings系统属性读写

Settings系统属性存储均为xml&#xff0c;分三种&#xff1a; 1.global&#xff1a;所有的偏好设置对系统的所有用户公开&#xff0c;第三方APP有读没有写的权限&#xff1b; 源码地址&#xff1a;frameworks/base/core/java/android/provider/Settings.java 对应xml路径&…...

2024年,企业的人才管理怎么做?这5点是关键!

当今时代&#xff0c;各行各业都面临着激烈的竞争。这些竞争归根结底都是人才的竞争。企业若想在竞争中掌握主动权&#xff0c;实现基业长青&#xff0c;就必须努力留住人才&#xff0c;并充分发挥他们的积极性、主动性和创造性。因此&#xff0c;做好人才管理是企业实现长期可…...

数据库DDL语句

数据库DDL语句&#xff1a; 查询所有数据库&#xff1a; show databases;查询当前数据库的名称 select database();创建数据库 create database [if not exists] 数据库名 [default charset 字符集] [collate 排序规则]注意&#xff1a;排序规则指定后&#xff0c;它会影响…...

《艺术大观》知网艺术刊:可加急, 出刊上网快

《艺术大观》 《艺术大观》征文通知 《艺术大观》期刊诚邀学者、艺术家和文化工作者积极投稿&#xff0c;共同探索艺术领域的前沿问题&#xff0c;促进学术交流和艺术创作的发展。我们欢迎各类艺术形式的研究与评论&#xff0c;包括但不限于绘画、雕塑、音乐、舞蹈、戏剧、电…...

如何在go语言中调用c语言代码

1.安装c语言编译器 要使用cgo&#xff0c;需要安装c语言编译器 gcc 2.检查CGO_ENABLED时候开启 使用以下命令查看&#xff1a; go env CGO_ENABLED 如果go env CGO_ENABLED被禁用(为0),需要将其设置为开启(为1) 3.编写c语言程序&#xff0c;并用go语言调用c语言程序 1&#xff…...

Monodle centerNet3D 瑞芯微RKNN、地平线Horizon芯片部署、TensorRT部署

一直想做一点3D目标检测&#xff0c;先来一篇单目3D目标检测Monodle&#xff08;基于centernet的&#xff09;&#xff0c;训练代码参考官方【代码】&#xff0c;这里只讲讲如何部署。 模型和完整仿真测试代码&#xff0c;放在github上参考链接【模型和完整代码】。 1 模型训练…...

Android Studio 使用MQTT协议开发应用时怎样关闭MQTT连接

Android Studio 使用MQTT协议开发应用时怎样关闭MQTT连接 Android Studio 使用MQTT协议开发应用时关闭MQTT连接 在使用mqtt开发的时候&#xff0c;有时候需要通过 返回 按钮关闭界面或者Activity时&#xff0c;关闭当前页面使用的mqtt连接&#xff0c;这里有两种方式彻底销毁…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

PydanticAI快速入门示例

参考链接&#xff1a;https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...

32位寻址与64位寻址

32位寻址与64位寻址 32位寻址是什么&#xff1f; 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元&#xff08;地址&#xff09;&#xff0c;其核心含义与能力如下&#xff1a; 1. 核心定义 地址位宽&#xff1a;CPU或内存控制器用32位…...

Oracle实用参考(13)——Oracle for Linux物理DG环境搭建(2)

13.2. Oracle for Linux物理DG环境搭建 Oracle 数据库的DataGuard技术方案,业界也称为DG,其在数据库高可用、容灾及负载分离等方面,都有着非常广泛的应用,对此,前面相关章节已做过较为详尽的讲解,此处不再赘述。 需要说明的是, DG方案又分为物理DG和逻辑DG,两者的搭建…...