Transformer详解(3)-多头自注意力机制
attention


multi-head attention

 
pytorch代码实现
import math
import torch
from torch import nn
import torch.nn.functional as Fclass MultiHeadAttention(nn.Module):def __init__(self, heads=8, d_model=128, droput=0.1):super().__init__()self.d_model = d_model  # 128self.d_k = d_model // heads  # 128//8=16self.h = heads  # 8self.q_linear = nn.Linear(d_model, d_model)  # (50,128)*(128,128)=(50,128),其中(128*128)属于权重,在网络训练中学习。self.k_linear = nn.Linear(d_model, d_model)self.v_linear = nn.Linear(d_model, d_model)self.dropout = nn.Dropout(droput)self.out = nn.Linear(d_model, d_model)def attention(self, q, k, v, d_k, mask=None, dropout=None):scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)  # 矩阵乘法 (32,8,50,16)*(32,8,16,50)->(32,8,50,50)if mask is not None:mask = mask.unsqueeze(1)scores = scores.masked_fill(mask == 0, -1e9)scores = F.softmax(scores, dim=-1)if dropout is not None:scores = dropout(scores)output = torch.matmul(scores, v)  # (32,8,50,50)*(32,8,50,16)->(32,8,50,16)return outputdef forward(self, q, k, v, mask=None):bs = q.size(0)  # batch_size 大小  这里的例子是32k = self.k_linear(k).view(bs, -1, self.h, self.d_k)q = self.k_linear(q).view(bs, -1, self.h, self.d_k)v = self.k_linear(v).view(bs, -1, self.h, self.d_k)# (32,50,128)->(32,50,128)->(32,50,8,16)  8*16=128 每个embedding拆成的8份,也就是8个头k = k.transpose(1, 2)  # (32,50,8,16)->(32,8,50,16)q = q.transpose(1, 2)v = v.transpose(1, 2)scores = self.attention(q, k, v, self.d_k, mask, self.dropout)  # (32,8,50,16)concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model)  # (32,50,128)output = self.out(concat)  # (32,50,128)return outputif __name__ == '__main__':multi_head_attention = MultiHeadAttention(8, 128)normal_tensor = torch.randn(32, 50, 128)  # 随机生成均值为0,方差为1的正态分布。batch_size=32,序列长度=50,embedding维度=128。x = torch.sigmoid(normal_tensor)  # 把每个数缩放到(0,1)output = multi_head_attention(x, x, x)print('done')
相关文章:
Transformer详解(3)-多头自注意力机制
attention multi-head attention pytorch代码实现 import math import torch from torch import nn import torch.nn.functional as Fclass MultiHeadAttention(nn.Module):def __init__(self, heads8, d_model128, droput0.1):super().__init__()self.d_model d_model # 12…...
运用HTML、CSS设计Web网页——“西式甜品网”图例及代码
目录 一、效果展示图 二、设计分析 1.整体效果分析 2.头部header模块效果分析 3.导航及banner模块效果分析 4.分类classify模块效果分析 5.产品展示show模块效果分析 6.版权banquan模块效果分析 三、HTML、CSS代码分模块展示 1. 头部header模块代码 2.导航及bann…...
大语言模型是通用人工智能的实现路径吗?【文末有福利】
相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型:从线性回归到通用人工智能》,欢迎有兴趣的读者多多支持。 关于大语言模型的内容,推荐参考这个专栏。 内容大纲 相关说明一、哲学与人工智能二、内容简介三、书籍简介与福利粉…...
c语言——宏offsetof
1.介绍 !!! offsetof 是一个宏 2.使用举例 结构体章节的计算结构体占多少字节需要先掌握(本人博客结构体篇章中已经讲解过) 计算结构体中某变量相对于首地址的偏移,并给出说明 首先,结构体首个…...
C#串口通信-串口相关参数介绍
串口通讯(Serial Communication),是指外设和计算机间,通过数据信号线、地线等,按位进行传输数据的一种双向通讯方式。 串口是一种接口标准,它规定了接口的电气标准,没有规定接口插件电缆以及使用的通信协议,…...
节省时间与精力:用BAT文件和任务计划器自动执行重复任务
文章目录 1.BAT文件详解2. 经典BAT文件及使用场景3. 使用方法4. 如何设置BAT文件为定时任务5. 实例应用:自动清理临时文件 BAT文件,也就是批处理文件,是一种在Windows操作系统中自动执行一系列命令的文本文件。这些文件的扩展名为 .bat。通过…...
一年前的Java作业,模拟游戏玩家战斗
说明:一年前写的作业,感觉挺有意思的,将源码分享给大家。 刚开始看题也觉得很难,不过写着写着思路更加清晰,发现也没有想象中的那么难。 一、作业题目描述: 题目:模拟游戏玩家战斗 1.1 基础功…...
C++ 学习 关于引用
🙋本文主要讲讲C的引用 是基础入门篇~ 本文是阅读C Primer 第五版的笔记 🌈 关于引用 几个比较重要的点 🌿引用相当于为一个已经存在的对象所起的另外一个名字 🌞 定义引用时,程序把引用和它的初始值绑定(b…...
BERT ner 微调参数的选择
针对批大小和学习率的组合进行收敛速度测试,结论: 相同轮数的条件下,batchsize-32 相比 batchsize-256 的迭代步数越多,收敛更快批越大的话,学习率可以相对设得大一点 画图代码(deepseek生成)…...
【MySQL精通之路】系统变量-持久化系统变量
MySQL服务器维护用于配置其操作的系统变量。 系统变量可以具有影响整个服务器操作的全局值,也可以具有影响当前会话的会话值,或者两者兼而有之。 许多系统变量是动态的,可以在运行时使用SET语句进行更改,以影响当前服务器实例的…...
fdk-aac将aac格式转为pcm数据
int sampleRate 44100; // 采样率int sampleSizeInBits 16; // 采样位数,通常是16int channels 2; // 通道数,单声道为1,立体声为2FILE *m_fd NULL;FILE *m_fd2 NULL;HANDLE_AACDECODER decoder aacDecoder_Open(TT_MP4_ADTS, 1);if (!…...
【C语言深度解剖】(15):动态内存管理和柔性数组
🤡博客主页:醉竺 🥰本文专栏:《C语言深度解剖》 😻欢迎关注:感谢大家的点赞评论关注,祝您学有所成! ✨✨💜💛想要学习更多C语言深度解剖点击专栏链接查看&…...
力扣每日一题 5/25
题目: 给你一个下标从 0 开始、长度为 n 的整数数组 nums ,以及整数 indexDifference 和整数 valueDifference 。 你的任务是从范围 [0, n - 1] 内找出 2 个满足下述所有条件的下标 i 和 j : abs(i - j) > indexDifference 且abs(nums…...
(1)无线电失控保护(一)
文章目录 前言 1 何时触发失控保护 2 将会发生什么 3 接收机配置...
基于51单片机的多功能万年历温度计—可显示农历
基于51单片机的万年历温度计 (仿真+程序+原理图+设计报告) 功能介绍 具体功能: 本设计基于STC89C52(与AT89S52、AT89C52通用,可任选)单片机以及DS1302时钟芯片、DS18B…...
【软件设计师】下午题总结-数据流图、数据库、统一建模语言
下午题总结 1 试题一1.1 结构化语言 2 试题二弱实体增加权限增加实体间联系和联系的类型 3 试题三3.1 UML关系例子 3.2 例子(2016上半年)3.3 设计类分类3.3.1 接口类3.3.2 控制类3.3.3 实体类 3.4 简答题3.4.1 简要说明选择候选类的原则3.4.2 某个类必须…...
CSDN 自动评论互动脚本
声明 该脚本的目的只是为了提升博客创作效率和博主互动效率,希望大家还是要尊重各位博主的劳动成果。 数据库设计 尽量我们要新建一个数据库csdn_article,再在其中建一个数据表article -- csdn_article-- article-- 需要进行自动评论的表格信息...CREATE TABLE `article`…...
Tomcat端口配置
Tomcat是开源免费的服务器,其默认的端口为8080,本文讲述一下如何配置端口。 最后在浏览器中输入localhost:8888即可打开Tomcat界面...
SpringBoot中使用AOP实现日志记录功能
目录 一、SpringBoot框架介绍 二、什么是 AOP 三、日志记录的必要性 四、SpringBoot中如何使用AOP实现日志记录功能 一、SpringBoot框架介绍 SpringBoot是一个开源的Java开发框架,旨在简化基于Spring框架的应用程序的开发。它提供了一套开箱即用的工具…...
kubernetes(k8s) v1.30.1 helm 集群安装 Dashboard v7.4.0 可视化管理工具 图形化管理工具
本文 紧接上一篇:详细教程 Centos8.5 基于 k8s v1.30.1 部署高可用集群 kubeadm 安装 kubernetes v1.30.1 docker集群搭建 延长证书有效期-CSDN博客 1 Dashboard 从版本 7.0.0 开始,不再支持基于清单的安装。仅支持基于 Helm 的安装. #Helm 下载安装 …...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
