1301-习题1-1高等数学
1. 求下列函数的自然定义域
自然定义域就是使函数有意义的定义域。
常见自然定义域:
- 开根号 x \sqrt x x: x ≥ 0 x \ge 0 x≥0
- 自变量为分式的分母 1 x \frac{1}{x} x1: x ≠ 0 x \ne 0 x=0
- 三角函数 tan x cot x \tan x \cot x tanxcotx: x ≠ π 2 + k π x\ne \frac{\pi}{2}+k\pi x=2π+kπ
- 反三角函数 arcsin x , arccos x \arcsin x,\arccos x arcsinx,arccosx: − 1 ≤ x ≤ 1 -1\le x\le 1 −1≤x≤1
- 反三角函数 arctan x \arctan x arctanx: x ∈ R x\in R x∈R
- 对数函数 ln x \ln x lnx: x > 0 x\gt 0 x>0
(3) y = 1 x − 1 − x 2 y=\frac{1}{x}-\sqrt{1-x^2} y=x1−1−x2
解: { x ≠ 0 , 1 − x 2 ≥ 0 得 − 1 ≤ x ≤ 1 且 x ≠ 0 ∴ D = [ − 1 , 0 ) ∪ ( 0 , 1 ] 解:\\ \begin{cases} x\ne 0,\\ 1-x^2\ge 0\\ \end{cases}\\ 得 -1\le x\le 1且x\ne 0\\ \therefore D=[-1,0)\cup(0,1] 解:{x=0,1−x2≥0得−1≤x≤1且x=0∴D=[−1,0)∪(0,1]
(8) y = 3 − x + arctan 1 x y=\sqrt{3-x}+\arctan{\frac{1}{x}} y=3−x+arctanx1
解: 该函数由 y 1 = 3 − x 与 y 2 = arctan 1 x 复合而成,所以应同时满足 { 3 − x ≥ 0 , x ≠ 0 得 x ≤ 3 且 x ≠ 0 ∴ 定义域 D = ( − ∞ , 0 ) ∪ ( 0 , 3 ] 解:\\ 该函数由y_1=\sqrt{3-x}与y_2=\arctan{\frac{1}{x}}复合而成,所以应同时满足\\ \begin{cases} 3-x\ge 0,\\ x\ne 0\\ \end{cases}\\ 得 x\le 3且x\ne 0\\ \therefore 定义域D = (-\infty, 0)\cup (0,3] 解:该函数由y1=3−x与y2=arctanx1复合而成,所以应同时满足{3−x≥0,x=0得x≤3且x=0∴定义域D=(−∞,0)∪(0,3]
2. 下列各题中,函数 f ( x ) 和 g ( x ) f(x)和g(x) f(x)和g(x)是否相同?为什么?
函数相同满足条件:定义域相同;函数关系相同;
Tips: 变量符号可不同
(3) f ( x ) = x 4 − x 3 3 , g ( x ) = x x − 1 3 f(x)=\sqrt[3]{x^4-x^3},g(x)=x\sqrt[3]{x-1} f(x)=3x4−x3,g(x)=x3x−1
f ( x ) 与 g ( x ) 相同 f ( x ) = x 4 − x 3 3 , x ∈ R 化简得 : f ( x ) = x x − 1 3 g ( x ) = x x − 1 3 , x ∈ R 定义域相同,函数关系相同,所以 f ( x ) 与 g ( x ) 相同 f(x)与g(x)相同\\ f(x)=\sqrt[3]{x^4-x^3},x\in R\\ 化简得:f(x)=x\sqrt[3]{x-1}\\ g(x)=x\sqrt[3]{x-1},x\in R\\ 定义域相同,函数关系相同,所以f(x)与g(x)相同 f(x)与g(x)相同f(x)=3x4−x3,x∈R化简得:f(x)=x3x−1g(x)=x3x−1,x∈R定义域相同,函数关系相同,所以f(x)与g(x)相同
(4) f ( x ) = 1 , g ( x ) = sec 2 x − tan 2 x f(x)=1,g(x)=\sec^2x-\tan^2x f(x)=1,g(x)=sec2x−tan2x
解: f ( x ) 定义域为 : D f = R g ( x ) 的定义域为 D g = ( − π 2 + k π , π 2 + k π ) , k ∈ Z ∴ f ( x ) 与 g ( x ) 不同 解:\\ f(x)定义域为:D_f=R\\ g(x)的定义域为D_g=(-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi),k\in Z\\ \therefore f(x)与g(x)不同 解:f(x)定义域为:Df=Rg(x)的定义域为Dg=(−2π+kπ,2π+kπ),k∈Z∴f(x)与g(x)不同
3. 分段三角函数值和图形
ϕ ( x ) = { ∣ sin x ∣ , ∣ x ∣ < π 3 , 0 , ∣ x ∣ ≥ π 3 \phi(x)=\begin{cases} |\sin x|,\quad|x|\lt \frac{\pi}{3},\\ 0,\qquad\quad |x|\ge \frac{\pi}{3} \end{cases} ϕ(x)={∣sinx∣,∣x∣<3π,0,∣x∣≥3π
求 ϕ ( π 6 ) , ϕ ( π 4 ) , ϕ ( − π 4 ) , ϕ ( − 2 ) \phi(\frac{\pi}{6}),\phi(\frac{\pi}{4}),\phi(-\frac{\pi}{4}),\phi(-2) ϕ(6π),ϕ(4π),ϕ(−4π),ϕ(−2),并做出函数 y = ϕ ( x ) y=\phi(x) y=ϕ(x)的图形
解: ϕ ( π 6 ) = ∣ sin π 6 ∣ = 1 2 ϕ ( π 4 ) = 2 2 ϕ ( − π 4 ) = 2 2 ϕ ( − 2 ) = 0 解:\\ \phi(\frac{\pi}{6})=|\sin \frac{\pi}{6}|=\frac{1}{2}\\ \phi(\frac{\pi}{4})=\frac{\sqrt2}{2}\\ \phi(-\frac{\pi}{4})=\frac{\sqrt2}{2}\\ \phi(-2)=0 解:ϕ(6π)=∣sin6π∣=21ϕ(4π)=22ϕ(−4π)=22ϕ(−2)=0
图形如下图所示:
4. 试证下列函数在指定区间内的单调性:
(1) y = x 1 − x , ( − ∞ , 1 ) y=\frac{x}{1-x},(-\infty,1) y=1−xx,(−∞,1) (2) y = x + ln x , ( 0 , + ∞ ) y=x+\ln x,(0,+\infty) y=x+lnx,(0,+∞)
证明: ( 1 ) 设置 x 1 , x 2 ∈ ( − ∞ , 1 ) , 且 x 1 < x 2 f ( x 1 ) − f ( x 2 ) = x 1 1 − x 1 − x 2 1 − x 2 = x 1 − x 2 ( 1 − x 1 ) ( 1 − x 2 ) < 0 ∴ y = x 1 − x 在区间 ( − ∞ , 1 ) 上单调递增 ( 2 )设置 x 1 , x 2 ∈ ( 0 , + ∞ ) , 且 x 1 < x 2 f ( x 1 ) − f ( x 2 ) = x 1 + ln x 1 − ( x 2 + ln x 2 ) = ( x 1 − x 2 ) + ln x 1 x 2 < 0 ∴ y = x + ln x 在区间 ( 0 , + ∞ ) 区间上单调递增 证明:\\ (1)设置x_1,x_2\in (-\infty,1),且x_1\lt x_2\\ f(x_1)-f(x_2)=\frac{x_1}{1-x_1}-\frac{x_2}{1-x_2}\\ =\frac{x_1-x_2}{(1-x_1)(1-x_2)}\lt 0\\ \therefore y=\frac{x}{1-x}在区间(-\infty,1)上单调递增\\ (2)设置x_1,x_2\in (0,+\infty),且x_1\lt x_2\\ f(x_1)-f(x_2)=x_1+\ln x_1-(x_2+\ln x_2)\\ =(x_1-x_2)+\ln\frac{x_1}{x_2}\lt 0\\ \therefore y=x+\ln x在区间(0,+\infty)区间上单调递增 证明:(1)设置x1,x2∈(−∞,1),且x1<x2f(x1)−f(x2)=1−x1x1−1−x2x2=(1−x1)(1−x2)x1−x2<0∴y=1−xx在区间(−∞,1)上单调递增(2)设置x1,x2∈(0,+∞),且x1<x2f(x1)−f(x2)=x1+lnx1−(x2+lnx2)=(x1−x2)+lnx2x1<0∴y=x+lnx在区间(0,+∞)区间上单调递增
5. 奇偶性与单调性
设f(x)为定义在 ( − l , l ) (-l,l) (−l,l)内的奇函数,若f(x)在 ( 0 , l ) (0,l) (0,l)内单调增加,证明f(x)在 ( − l , 0 ) (-l,0) (−l,0)内也单调递增
证明: 设 x 1 , x 2 ∈ ( 0 , l ) , 且 x 1 < x 2 则 − x 1 , − x 2 ∈ ( − l , 0 ) , 且 − x 1 > − x 2 ∵ f ( x ) 在 ( − l , l ) 内为奇函数,则 f ( x ) = − f ( − x ) f ( x ) 在 ( 0 , l ) 内单调增加 f ( x 1 ) < f ( x 2 ) 即 − f ( − x 1 ) < − f ( − x 2 ) = > f ( − x 1 ) > f ( − x 2 ) 即 f ( x ) 在 ( − 1 , 0 ) 内也单调增加 证明:\\ 设x_1,x_2\in(0,l),且x_1\lt x_2\\ 则 -x_1,-x_2\in(-l,0),且-x_1\gt -x_2\\ \because f(x)在(-l,l)内为奇函数,则\\ f(x)=-f(-x)\\ f(x)在(0,l)内单调增加\\ f(x_1)\lt f(x_2)\\ 即-f(-x_1)\lt -f(-x_2)=>f(-x_1)\gt f(-x_2)\\ 即f(x)在(-1,0)内也单调增加 证明:设x1,x2∈(0,l),且x1<x2则−x1,−x2∈(−l,0),且−x1>−x2∵f(x)在(−l,l)内为奇函数,则f(x)=−f(−x)f(x)在(0,l)内单调增加f(x1)<f(x2)即−f(−x1)<−f(−x2)=>f(−x1)>f(−x2)即f(x)在(−1,0)内也单调增加
6. 奇偶运算结果的奇偶性
只给结论,不再证明
- 两个偶函数的和是偶函数,两个奇函数的和是奇函数。
- 两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。
8.周期函数的周期
(3) 1 + sin ( π x ) 1+\sin(\pi x) 1+sin(πx) 周期 2 (5) sin 2 x \sin^2x sin2x
sin 2 x = 1 − cos 2 x 2 周期为 π \sin^2x = \frac{1-\cos2x}{2}\\ 周期为\pi sin2x=21−cos2x周期为π
9.求下列函数的反函数
(2) y = 1 − x 1 + x y=\frac{1-x}{1+x} y=1+x1−x
解: y = 1 − x 1 + x y ( 1 + x ) = 1 − x y x + x = 1 − y x = 1 − y 1 + y , y ≠ − 1 f − 1 ( x ) = 1 − x 1 + x , x ≠ − 1 解:\\ y=\frac{1-x}{1+x}\\ y(1+x)=1-x\\ yx+x=1-y\\ x=\frac{1-y}{1+y},y\not=-1\\ f^{-1}(x)=\frac{1-x}{1+x},x\not=-1 解:y=1+x1−xy(1+x)=1−xyx+x=1−yx=1+y1−y,y=−1f−1(x)=1+x1−x,x=−1
(3) y = a x + b c x + d ( a d − b c ≠ 0 ) y=\frac{ax+b}{cx+d}(ad-bc\not=0) y=cx+dax+b(ad−bc=0)
解: y = a x + b c x + d y ( c x + d ) = a x + b c y x − a x = b − d y x = − d y + b c y − a 解:\\ y=\frac{ax+b}{cx+d}\\ y(cx+d)=ax+b\\ cyx-ax=b-dy\\ x=\frac{-dy+b}{cy-a} 解:y=cx+dax+by(cx+d)=ax+bcyx−ax=b−dyx=cy−a−dy+b
(6) y = 2 x 2 x + 1 y=\frac{2^x}{2^x+1} y=2x+12x
解: y = 2 x 2 x + 1 2 x ( 1 − y ) = y x = log 2 ( y 1 − y ) f − 1 ( x ) = log 2 ( y 1 − y ) 解:\\ y = \frac{2^x}{2^x+1}\\ 2^x(1-y)=y\\ x=\log_2(\frac{y}{1-y})\\ f^{-1}(x)=\log_2(\frac{y}{1-y}) 解:y=2x+12x2x(1−y)=yx=log2(1−yy)f−1(x)=log2(1−yy)
结语
❓QQ:806797785
⭐️文档笔记地址:https://gitee.com/gaogzhen/math
参考:
[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.p16-18.
[2]同济《高等数学》第七版-课后题逐题讲解[CP/OL].2023-07-26.p1.
相关文章:

1301-习题1-1高等数学
1. 求下列函数的自然定义域 自然定义域就是使函数有意义的定义域。 常见自然定义域: 开根号 x \sqrt x x : x ≥ 0 x \ge 0 x≥0自变量为分式的分母 1 x \frac{1}{x} x1: x ≠ 0 x \ne 0 x0三角函数 tan x cot x \tan x \cot x …...

C语言之指针进阶(3),函数指针
目录 前言: 一、函数指针变量的概念 二、函数指针变量的创建 三、函数指针变量的使用 四、两段特殊代码的理解 五、typedef 六、函数指针数组 总结: 前言: 本文主要讲述C语言指针中的函数指针,包括函数指针变量的概念、创建…...

RabbitMQ安装及配套Laravel使用
MQ MQ 全称 Message Queue(消息队列),是在消息的传输过程中保存消息的容器。多用于系统之间的异步通信。 为什么需要mq: 解耦:MQ能够使各个系统或组件之间解耦,降低它们之间的耦合度,提高系统的灵活性和可维护性异步处理:通过MQ可以实现异步处理,提高系统响应速度和吞…...

java在类的定义中创建自己的对象?
当在main方法中新建自身所在类的对象,并调用main方法时,会不断循环调用main方法,直到栈溢出 package com.keywordStudy;public class mainTest {static int value 33;public static void main(String[] args) throws Exception{String[] sn…...
掌握C++回调:按值捕获、按引用捕获与弱引用
文章目录 一、按引用捕获和按值捕获1.1 原理1.2 案例 二、弱引用2.1 原理2.2 案例一2.3 案例二:使用base库的弱引用 三、总结 在C回调中,当使用Lambda表达式捕获外部变量时,有两种捕获方式:按值捕获和按引用捕获。 一、按引用捕获…...

抖音运营_如何做出优质的短视频
目录 一 短视频内容的构成 1 图像 2 字幕 3 声音 4 特效 5 描述 6 评论 二 短视频的热门类型 1 颜值圈粉类 2 知识教学类 3 幽默搞笑类 4 商品展示类 5 才艺技能类 6 评论解说类 三 热门短视频的特征 1 产生共鸣 2 正能量 3 紧跟热点话题 4 富有创意 四 短视…...

Day21:Leetcode513.找树左下角的值 +112. 路径总和 113.路径总和ii + 106.从中序与后序遍历序列构造二叉树
LeetCode:513.找树左下角的值 解决方案: 1.思路 在遍历一个节点时,需要先把它的非空右子节点放入队列,然后再把它的非空左子节点放入队列,这样才能保证从右到左遍历每一层的节点。广度优先搜索所遍历的最后一个节点…...
Java数据结构和算法(B树)
前言 B树又叫平衡的多路搜索树;平衡的意思是又满足平衡二叉树的一些性质,左树大于右树; 多路意思是,可以多个结点,不再是像二叉树只有两个结点; 实现原理 B树是一种自平衡的搜索树,通常用于实…...
成为程序员后我都明白了什么?从入行到弃坑?
作为一个入行近10年的php程序员,真心感觉一切都才刚开始,对计算机,编程语言的理解也好,程序员中年危机也罢,之前都是听别人说的,真的自己到了这个水平,这个年龄才深刻体会到这其中的种种。 我一…...
python --创建固定字符串长度,先进先出
a 123def concatenate_within_limit(b, new_string):# 计算新字符串与a的长度之和a btotal_length len(a) len(new_string)# 如果长度超过1024,从前面删除足够的字符if total_length > 5:diff total_length - 5a a[diff:] new_string # 删除前diff个字符…...
容器化部署
目录 docker容器化部署 怎样使用Docker Compose或Kubernetes等容器编排工具来管理和扩展联邦学习系统 使用Docker Compose...
国产数据库TiDB的常用方法
TiDB的常用方法主要涉及安装配置、数据操作、性能调优以及监控和维护等方面。以下是对这些常用方法的归纳和介绍: 1. 安装与配置 安装TiDB:根据官方文档的指引,用户可以按照步骤进行TiDB的安装。配置TiDB:安装完成后,…...

基于DdddOcr通用验证码离线本地识别SDK搭建个人云打码接口Api
前言 最近介绍了一款免费的验证码识别网站,识别效率太低,考虑到ddddocr是开源的,决定搭建搭建一个,发现原作者sml2h3已经推出好久了,但是网上没有宝塔安装的教程,于是本次通过宝塔搭建属于自己的带带弟弟OCR通用验证码离线本地识别 原项目地址:https://github.com/sml2…...

2、xss-labs之level2
1、打开页面 2、传入xss代码 payload:<script>alert(xss)</script>,发现返回<script>alert(xss)</script> 3、分析原因 打开f12,没什么发现 看后端源码,在这form表单通过get获取keyword的值赋给$str&am…...

人才测评的应用:人才选拔,岗位晋升,面试招聘测评
人才测评自诞生以来,就被广泛应用在各大方面,不仅是我们熟悉的招聘上,还有其他考核和晋升,都会需要用到人才测评。不知道怎么招聘?或者不懂得如何实现人才晋升?都可以参考人才测评,利用它帮我们…...
前端面试题日常练-day33 【面试题】
题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末。 在jQuery中,以下哪个选项用于在元素上绑定一个点击事件? a) click() b) bind() c) on() d) trigger() jQuery中,以下哪个选项用于获取元素的属性值? …...

非整数倍数据位宽转换24to128
描述 实现数据位宽转换电路,实现24bit数据输入转换为128bit数据输出。其中,先到的数据应置于输出的高bit位。 电路的接口如下图所示。valid_in用来指示数据输入data_in的有效性,valid_out用来指示数据输出data_out的有效性;clk是时…...

html通过数据改变,图片跟着改变
改变前 改变后 通过数据来控制样式展示 <template><div>通过num控制图标是否更改{{num}}<div class"box"><!-- 如果num大于1则是另一种,样式,如果小时1,则是另一种样式 --><div class"item&qu…...

centos7.9 安装SqlServer
1、导入Microsoft SQL Server CentOS存储库: sudo curl -o /etc/yum.repos.d/mssql-server.repo https://packages.microsoft.com/config/rhel/7/mssql-server-2019.repo2、安装SQL Server: sudo yum install -y mssql-server假如机器内存不足2G 需要对…...

Idea中flume的Interceptor的编写教程
1.新建-项目-新建项目 注意位置是将来打包文件存放的位置,即我们打包好的文件在这/export/data个目录下寻找 2. 在maven项目中导入依赖 Pom.xml文件中写入 <dependencies> <dependency> <groupId>org.apache.flume</groupId> <artifa…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...