仅需一块 4GB 的 GPU ,就能运行开源大语言模型:Llama3 70B
最强的开源大语言模型 Llama3 已经发布一段时间了,一些盆友资源有限,私信询问是否可以使用 4GB 的 VRAM 在本地运行 Llama3 70B。
与 GPT-4 相比,Llama3 的性能如何?Llama3 使用了哪些关键的前沿技术使其变得如此强大?Llama3 的突破是否意味着开源模型已经正式开始超越闭源模型?
本文给一个解决方案:在仅有 4GB 显存的单个 GPU 上运行 Llama3 70B,并解释相关问题,喜欢本文记得收藏、点赞、关注,欢迎与我进行技术交流。
技术交流
前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~
我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。
方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN
方案
Llama3 的模型架构没有改变,因此 AirLLM 自然已经支持完美运行 Llama3 70B!它甚至可以在 MacBook 上运行。
首先,安装 AirLLM:
pip install airllm
然后,你只需要几行代码:
from airllm import AutoModelMAX_LENGTH = 128
model = AutoModel.from_pretrained("v2ray/Llama-3-70B")input_text = [ 'What is the capital of United States?'
]input_tokens = model.tokenizer(input_text, return_tensors="pt", return_attention_mask=False, truncation=True, max_length=MAX_LENGTH, padding=False)generation_output = model.generate( input_tokens['input_ids'].cuda(), max_new_tokens=20, use_cache=True, return_dict_in_generate=True
)output = model.tokenizer.decode(generation_output.sequences[0])
print(output)
Llama3 与 GPT-4 的比较
根据官方评估数据和最新的 lmsys 排行榜,Llama3 70B 非常接近 GPT-4 和 Claude3 Opus。
官方评估结果:
lmsys排行榜结果:
当然,将相似规模的400B模型与GPT-4和Claude3 Opus进行比较会更合理:
Llama3 400B已经非常接近GPT-4和Claude3的最强版本,而且它还在持续训练中。
Llama3的核心改进是什么?
Llama3 的架构没有变化;在训练方法上有一些技术改进,比如基于DPO(离散策略优化)的模型对齐训练。
DPO 基本上已经成为所有排行榜上顶级大模型的标准训练方法——它确实有效!
当然,Llama3 的主要秘密武器在于其训练数据的数量和质量的巨大提升。从 Llama2 的2万亿增加到15万亿!人工智能的核心就是数据!
数据的改进不仅在于数量,还有质量。Meta进行了大量的数据质量过滤、去重等工作,其中很多都是基于使用像Llama2这样的模型来过滤和选择数据。
训练AI模型的核心是数据。要训练一个好的AI模型,不在于拥有很多花哨的训练技术,而在于扎实细致地做好基础工作。特别是那些不太引人注目、繁琐枯燥的数据质量工作——这实际上至关重要。
我一直对 Meta AI 的能力评价很高。从早期使用 Transformer 进行判别性AI开始,Meta AI 以其扎实的数据处理基础著称,推出了许多长期占据SOTA榜首的经典模型,如Roberta和Roberta XLM。
Llama3 的成功是否预示着开源模型的崛起?
开源与闭源之间的斗争可能远未结束,还有很多戏剧性事件即将上演。
无论是开源还是闭源,训练大模型已经变成了一场烧钱的游戏。15万亿的数据和4000亿的模型不是小玩家能够负担得起的。我认为在接下来的六个月内,许多致力于大模型的小公司将会消失。
在烧钱的竞争中,真正比拼的是长期的投资回报能力和效率。事实上,直到今天,真正实现盈利的AI大语言模型应用仍然很少。很难说谁能够持续投资,以及以何种方式实现盈利。
参考链接
- https://ai.gopubby.com/run-the-strongest-open-source-llm-model-llama3-70b-with-just-a-single-4gb-gpu-7e0ea2ad8ba2
- https://github.com/lyogavin/Anima/tree/main/air_llm
相关文章:

仅需一块 4GB 的 GPU ,就能运行开源大语言模型:Llama3 70B
最强的开源大语言模型 Llama3 已经发布一段时间了,一些盆友资源有限,私信询问是否可以使用 4GB 的 VRAM 在本地运行 Llama3 70B。 与 GPT-4 相比,Llama3 的性能如何?Llama3 使用了哪些关键的前沿技术使其变得如此强大?…...
一战成电失败,二战上岸复旦!
这个系列会邀请往届学长学姐进行经验分享~ 本篇是复旦大学957来自专业课134分上岸同学的经验分享。 经验分享 大家好,大伙能点进这个帖子倍感荣幸。 先说一下个人情况吧,鼠鼠本科武汉大学物院,总共四年混了四年,绩点低&#x…...

27寸2K显示器 - HKC G27H2
HKC G27H2是一款面向电竞市场的高性能显示器,以其2K分辨率和180Hz的刷新率作为主要卖点,旨在为玩家提供流畅而清晰的视觉体验。配备HDR 400技术和95% DCI-P3色域覆盖,这款显示器还支持升降旋转支架,为用户提供了高度的人体工程学适…...
编程实战:类C语法的编译型脚本解释器(七)语句
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 系列入口: 编程实…...

实体-联系图
为了把用户的数据要求清楚、准确地描述出来,系统分析员通常建立一个概念性的数据模型(也称为信息模型)。概念性数据模型是一种面向问题的数据模型,是按照用户的观点对数据建立的模型。它描述了从用户角度看到的数据,它反映了用户的现实环境, 而且与在软件系统中的实现方法无关。…...

ROCm上来自Transformers的双向编码器表示(BERT)
14.8. 来自Transformers的双向编码器表示(BERT) — 动手学深度学习 2.0.0 documentation (d2l.ai) 代码 import torch from torch import nn from d2l import torch as d2l#save def get_tokens_and_segments(tokens_a, tokens_bNone):""&qu…...
期权课程之第一节【用生活的例子解释什么是期权】
1、用生活的例子解释什么是期权 期权的英文名也就叫Option【选择】,实际上期权本质也就是一种选择权。 买入资产的例子 假如你【买家】看上了一套老王的【卖家】房子,现价100W、但是目前手头比较紧、但是你又不想错过这个房子,你可以先给老…...

【YOLOv10训练教程】如何使用YOLOv10训练自己的数据集并且推理使用
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

[windows系统安装/重装系统][step-4][番外篇-2]N卡驱动重装 |解决:开机几小时后电脑卡顿 | 后台自动运行了上千个Rundll32进程问题
现象 开机几小时后,电脑变卡,打开后台管理器都卡,后台管理去转圈圈一小会儿后看到后台进程上千个,好多个Rundll32进程 重启下运行会稍快 重启后运行快,后台管理器反应也快 打开后台管理器不卡(几小时后打…...

Redis开发实战
单机部署安装 服务端下载,安装,启动去官网下载最新的版本:http://redis.io/download ,这里用的是3.0.2解压后,进入解压好的文件夹redis的安装非常简单,因为已经有现成的Makefile文件,所以直接先…...

C++ | Leetcode C++题解之第112题路径总和
题目: 题解: class Solution { public:bool hasPathSum(TreeNode *root, int sum) {if (root nullptr) {return false;}if (root->left nullptr && root->right nullptr) {return sum root->val;}return hasPathSum(root->left…...
leetcode力扣 2024. 考试的最大困扰度
一位老师正在出一场由 n 道判断题构成的考试,每道题的答案为 true (用 ‘T’ 表示)或者 false (用 ‘F’ 表示)。老师想增加学生对自己做出答案的不确定性,方法是最大化有连续相同结果的题数。(…...

lvgl无法显示中文
环境: VS2019、LVGL8.3 问题: VS2019默认编码为GB2312, 解决: VS2022设置编码方式为utf-8的三种方式_vs utf8-CSDN博客 我用的方法2,设置为 utf-8无签名就行。...

读书笔记-Java并发编程的艺术-第1章 并发编程的挑战
文章目录 1.1 上下文切换1.1.1 多线程一定快吗1.1.2 如何减少上下文切换 1.2 死锁1.3 资源限制的挑战 1.1 上下文切换 即时是单核处理器也支持多线程执行代码,CPU通过给每个线程分配CPU时间片来实现这个机制。时间片是CPU分配给多个线程的时间,因为时间…...

RUST 和 GO 如何管理它们的内存
100编程书屋_孔夫子旧书网 Go 中的内存管理 Go 中的内存不会在缓存键被驱逐时立即释放。 相反,垃圾收集器会经常运行以发现任何没有引用的内存并释放它。 换句话说,内存会一直挂起,直到垃圾收集器可以评估它是否真正不再使用,而…...

对于高速信号完整性,一块聊聊啊(12)
常见的无源电子器件 电子系统中的无源器件可以按照所担当的电路功能分为电路类器件、连接类器件。 A、电路类器件: (1)二极管(diode) (2)电阻器(resistor) …...

C++学习笔记(19)——模板
目录 模板参数与非类型模板参数 模板参数 类型模板参数——传递类型 非类型模板参数——传递数量 C11希望array替代静态数组,但实际上vector包揽了一切 模板总结 优点: 缺点: 模板特化:针对某些类型进行特殊化处理 特化…...

java8新特性——函数式编程详解
目录 一 概述1.1 背景1.2 函数式编程的意义1.3 函数式编程的发展 Lambda表达式1.1 介绍1.2 使用Lambda的好处1.3 Lambda方法1.3.1 Lambda表达式结构1.3.2 Lambda表达式的特征 1.4 Lambda的使用1.4.1 定义函数式接口1.4.2 Lambda表达式实现函数式接口1.4.3 简化Lambda表达式1.4.…...
mybatis-plus小课堂: apply 拼接 in SQL,来查询从表某个范围内的数据
文章目录 引言I mybatis-Plus 之 apply 拼接 in SQL1.1 apply源码实现1.2 apply 拼接 in SQL : 非字符串数组1.3 apply 拼接 in SQL : 字符串数组II 如果in的数量太多,采用子查询。III 常见问题: Cause: comColumn xxx in where clause is ambiguoussee also引言 I mybati…...
民宿推荐系统-手把手调试搭建
民宿推荐系统-手把手调试搭建 民宿推荐系统-手把手调试搭建...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...