当前位置: 首页 > news >正文

[LLM]从GPT-4o原理到下一代人机交互技术

一 定义

GPT-4o作为OpenAI推出的一款多模态大型语言模型,代表了这一交互技术的重要发展方向。
GPT-4o是OpenAI推出的最新旗舰级人工智能模型,它是GPT系列的一个重要升级,其中的"o"代表"Omni",中文意思是“全能”,凸显了其多功能特性。该模型被设计为能够实时对音频、视觉和文本进行推理,是迈向更自然人机交互的重要一步。

强调这是一个全能或多模态的模型。GPT-4o的一大特点是其能够处理多种类型的数据输入和输出,包括文本、音频和图像,实现了跨模态的理解和生成能力。这意味着它不仅能理解和生成文本,还能理解音频内容(如语音)和图像信息,并能将这些不同模态的信息综合处理和输出,极大地扩展了AI的应用场景和交互方式。
1)一个原生的多模型大模型,“端到端多模态大模型”。
2)图像,音频两个模态对齐于语言大模型。

背景痛点:在推出GPT-4o之前,使用语音模式与ChatGPT交流的延迟较长,无法直接观察语调、多个说话者或背景噪音,且无法输出笑声、歌唱或表达情感。

解决方案:通过训练一个全新的端到端模型,GPT-4o可以跨越文本、视觉和音频的多模态,将所有输入和输出都由同一个神经网络处理,从而提高了对多模态数据的理解和处理能力。

核心特点:GPT-4o接受任何文本、音频和图像的组合作为输入,并生成任何文本、音频和图像的组合输出。它在语音输入方面的响应速度为232毫秒,平均为320毫秒,与人类对话的响应时间相似。

优势:GPT-4o在文本、推理和编码智能方面表现出与GPT-4 Turbo相当的性能水平,同时在多语言、音频和视觉能力方面创下新的高水平。

安全性和限制:GPT-4o在设计上跨越多种模态,并通过过滤训练数据和后期训练调整模型行为等技术来确保安全性。对于新添加的模态,如音频,GPT-4o认识到存在各种新的风险,并采取了相应的安全干预措施。

总体而言,GPT-4o代表了深度学习在实际可用性方面的最新进展,提供了更加灵活、高效和安全的多模态智能解决方案。

二 基本原理


GPT-4o基于Transformer架构,这是一种深度学习模型,特别适合处理序列数据,如文本、音频波形和图像像素序列。它利用了大规模的预训练方法,在互联网上抓取的海量多模态数据集上进行训练,学习到语言、声音和视觉世界的复杂模式。通过自注意力机制,模型能够理解输入数据中的长程依赖关系,并在生成输出时考虑上下文的全面信息。

与之前的单模态模型相比,GPT-4o通过联合训练实现了跨模态的表示学习,使得模型能够理解不同模态之间的联系,实现更自然、更综合的人机交互。此外,它还优化了推理速度和成本效率,使其更加实用和广泛适用。

以下是GPT-4o的一些关键特点和原理,它们揭示了下一代人机交互技术的可能面貌:

  1. 多模态交互:GPT-4o支持文本、图像、音频和视频等多种输入模态,能够理解和生成跨模态的内容。这意味着用户可以通过语音、文字、图片或视频与系统交互,而系统也能够以相应的形式提供反馈34。

  2. 实时处理:GPT-4o能够实时处理语音、视觉和文本信息,响应速度接近人类自然对话的速度4。这为即时交互提供了可能,使得人机对话更加流畅和自然。

  3. 端到端训练:GPT-4o实现了多模态端到端训练,所有的输入和输出都由同一个神经网络处理。这种设计减少了信息在不同处理阶段之间的丢失,提高了交互的准确性和效率4。

  4. 性能和效率:GPT-4o在性能上取得了显著提升,运行速度是前代模型的两倍,同时成本减半3。这使得它能够被更广泛地应用于各种场景,包括客户服务、教育、娱乐等领域。

  5. 情绪识别与响应:GPT-4o能够检测和响应用户的情绪状态,调整其语气和响应方式,使得交互更加自然和有同理心3。

  6. 安全性:GPT-4o在设计时考虑了安全性,虽然语音模态带来了新的安全挑战,但OpenAI表示已将风险控制在中等水平以下4。

  7. 可扩展性:GPT-4o的API定价比前代产品便宜,速度更快,调用频率上限更高,这使得开发者和企业能够更容易地将GPT-4o集成到他们的应用程序中4。

  8. 特殊任务的token:GPT-4o可能采用了特殊的token来标记不同的任务,以便模型能够生成对应的内容,这有助于提高模型在特定任务上的表现4。

通过这些特点和原理,我们可以看到下一代人机交互技术正朝着更加智能、直观和个性化的方向发展。GPT-4o作为这一趋势的代表,展示了未来人机交互的潜力和可能性。下一代人机交互技术的核心在于实现更自然、更直观的交互方式,让机器能够更好地理解和响应人类的指令和需求。


1. Data Engineering(输入)

  • 语音输入:通过语音识别系统将用户的语音转换成文本, 参考 Whisper v3 与 Text 结合作为 Multitask training format 再编码
  • 图像输入:使用图像识别技术来解析和理解输入的图像内容,借鉴 Sora 的 Spacetime Patches 极致编码压缩;
  • 文本输入:LLM 仍然是主战场,投入人力超1/2,将用户的文本输入新的 Tokenizer直接送入模型,

2. Super Aligning(模态融合)

将不同模态的信息转换为统一的内部表示,将语音识别后的文本、图像识别的特征向量等融合。 https://openai.com/index/introducing-superalignment/?utm_source=tldrai

  • 端到端 E2E 的 MLM 大模型,对齐不同模态的输入,统一作为 Transformer 结构的长序列输入;
  • 让能力弱的大模型监督能力强的大模型(LLM supervise MLM)

3. Transformer Decoder(模型)

  • 纯 Transformer Decoder 架构,更加方便训练进行千卡、万卡规模的并行;
  • 推理使用大融合算子(Flash Attention)进行极致加速;
  • 符合 OpenAI 一贯 Everything Scaling Law 的方式;

4. Output

  • 输出可配置、可选择 text/audio/images,因此是 Conducting 的case,统一 Transformers Tokens 输入可实现;
  • Images 依然借鉴 SORA 使用 DiT 作为生成,但此处生成的为 Images not Videos;
  • Audio 与 Text 应该会有对齐,保持同声传译;

可能要用到的中间件:

  1. 语音识别系统(ASR):如Whisper v3等,用于将语音转换为文本。

  2. 图像识别系统:如Sora等,用于图像的解析和特征提取。

  3. 自然语言处理(NLP)工具:用于文本的预处理、语义理解等。

  4. 深度学习框架:如TensorFlow、PyTorch,用于构建和训练模型。

  5. 文本到语音(TTS)系统:如Text-to-Speech API等,用于生成语音输出。

  6. 多模态融合框架:自定义或开源框架,用于整合不同模态的信息。

  7. API网关:用于管理API请求,如API Gateway等。

  8. 数据存储和处理:如使用MongoDB、Redis等进行数据存储和快速检索。

  9. 机器学习平台:用于模型的训练和部署,如 AI Platform、AWS SageMaker等。

  10. 安全和隐私保护:确保数据安全和用户隐私,如使用OAuth、JWT等进行认证和授权。


多模态数据工程:
1.LLM tokens 减少,让大模型的输入序列 Tokens 结合多模态统一为 Signal 长序列;
2.词表增大 Token 减少, 分词从 100K 到 200K,LLM 编码率进一步增强;
3.Video 借鉴 SORA 对 spacetime patch 对时序极高编码率;

模型训练:
1.弱监督/自监督为主,否则多模态对齐进行统一模式训练非常难;

模型结构与训练:
1.通过 Super Aligning 对 Text、Audio、Video 三种模态进行对齐;
2.仍然以 LLM(GPT4) 能力为主,加入多模态维度 Tokens 形成一个大模型;

相关文章:

[LLM]从GPT-4o原理到下一代人机交互技术

一 定义 GPT-4o作为OpenAI推出的一款多模态大型语言模型,代表了这一交互技术的重要发展方向。 GPT-4o是OpenAI推出的最新旗舰级人工智能模型,它是GPT系列的一个重要升级,其中的"o"代表"Omni",中文意思是“全…...

【Spring】AOP——通知(Advice)

1、通知(Advice) 1.1简介 在AOP中,通知(Advice)是切面(Aspect)中的一部分,用于定义在连接点(Joinpoint)处应该执行的操作。通知类型可以在AOP框架中配置和使…...

python中的一些基础概念

在python中整型数据可以和浮点型数据相加,在python中字符串数据可以进行相加, 在python中整型数据可以和布尔类型进行算术运算。此时True当做1,False当做0但是这样的操作是没有意义的, python中只有字符串类型没有字符类型&…...

8.Redis之hash类型

1.hash类型的基本介绍 哈希表[之前学过的所有数据结构中,最最重要的] 1.日常开发中,出场频率非常高. 2.面试中,非常重要的考点, Redis 自身已经是键值对结构了Redis 自身的键值对就是通过 哈希 的方式来组织的 把 key 这一层组织完成之后, 到了 value 这一层~~ value 的其中…...

Edge浏览器

微软 Edge 是由微软开发的网络浏览器,它是 Windows 10 操作系统的默认浏览器,取代了之前的 Internet Explorer。Edge 浏览器在设计上注重性能、安全性和易用性,同时也提供了许多实用的功能,如内置笔记、阅读视图、集成的语音助手等…...

springboot项目中图片上传之后需要重启工程才能看到图片?

需求背景 最近在做一个用户自定义上传头像的小需求,用户上传头像然后需要立马回显。 需求是很常见的、正当的需求。如果不使用到对象存储这类服务,我们把用户头像的图片文件仅存在本地就可以了。我们在开发的过程中为了工程管理方便通常下意识会将图片…...

打卡信奥刷题(20)用Scratch图形化工具信奥B3756 [信息与未来 2021] 幸运数字

本题的基础是进制转换,关于2进制转换可以参考打卡信奥刷题(19)用Scratch图形化工具信奥B3972 [语言月赛 202405] 二进制 题解 知道了2进制,来实现5进制、7进制、9进制是一样的。 [信息与未来 2021] 幸运数字 题目描述 如果⼀个…...

Stream流模式通信及示例

Stream流模式通信是指在计算机网络中,数据作为连续的字节流传输而不是独立的数据包。它是一种面向连接的通信方式,常见于TCP(传输控制协议)。以下是Stream流模式通信的基本概念和一个简单的示例。 基本概念 面向连接&#xff1…...

从0开始学统计-t分布

1.t分布是如何被发现的? t分布最早由英国统计学家威廉塞弗顿(William Sealy Gosset)在1908年提出。塞弗顿是爱尔兰的一名酿酒厂的统计学家,他的工作需要对小样本数据进行分析。由于当时样本量较小(通常小于30&#xf…...

Git总结超全版

最近想系统的回顾一下Git的使用,如果只想快速的集成git到idea,可以参考另一篇我的博客中的git部分 目录 版本管理工具简介Git安装与配置Git远程仓库配置 Git常用命令为常用命令配置别名(可选)Git忽略文件.gitignore一些概念*本地仓库操作删除仓库内容 *远…...

网络安全之安全协议浅谈

安全协议 安全协议概述安全协议分类IPSecIPSec安全协议IPSec架构IPSec封装模式AH协议ESP协议SET协议SET协议电子交易模型SET协议安全目标认证中心CA 安全协议概述 安全协议是信息交换安全的核心,它在网络不同层次上、针对不同应用,通过对各种密码学技术…...

华为云部署前端项目发生的事

今天刚买了一个云服务,想着部署一下前端项目: 使用的是 docker nginx 部署 部署方法,在以往的文章中有介绍,如有兴趣可以看看docker 部署; 结果发现部署成功之后,竟然无法访问,从命令来看&…...

需求:实现一个可以统计代码的运行时间

需求:有一个做加法计算的函数,要统计执行这个加法函数代码运行了多久 import timedef add(a, b):time.sleep(1)return a bst time.time() add(100, 200) et time.time() print("该函数运行时间为:", et - st) 学了闭包&#x…...

软考高级之redis中使用zset实现延迟队列,你答对了么?

实现延迟队列的思路 zset的特性,带有分数的排序,以时间戳作为分数进行排序 添加任务 zdd取出任务 zrangbyscore执行任务 zrem 定时任务 public static void main(String[] args) {Jedis jedis new Jedis("ip", 6379);TimerTask task new …...

CS 下载安装详解

目录 CS简介: CS下载地址: CS的安装: CS简介: CS为目前渗透中常用的一款工具,它的强大在于控制windows木马,CS主要控制windows木马。 CS下载地址: 链接:https://pan.baidu.com/…...

前端canvas项目实战——在线图文编辑器(十):小地图MiniMap(上)

目录 前言一、 效果展示二、 实现步骤0. 行动前的思考1. 为小地图更新「背景图」2. 为小地图更新「滑动窗口」2.1 获取新的滑动窗口「宽高」2.2 获取新的滑动窗口「位置」3. 为小地图更新「遮罩」后记前言 上一篇博文中,我们引入了「逻辑画布」的概念,让整个工具的页面看起来…...

linux的chmod的数字太难记了,用u, g, o, a更简单!

u, g, o, 和 a是用来设置或查看文件或目录权限在类Unix或Linux系统中的特殊字符,它们分别代表文件或目录的所有者(user)、所属组(group)、其他用户(others)和所有用户(all users)。 而权限方r和w是其中的两种,分别代表读权限(read&#xff0…...

牛客热题:有效括号

📟作者主页:慢热的陕西人 🌴专栏链接:力扣刷题日记 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 文章目录 牛客热题:有效括号题目链接方法一&#x…...

利用SQL语句实现多表联合查询——多表关系介绍

1.多对多查询 先创建一个student表和course表,应该利用外键来实现,通过一个中间表分别对应student和course中的id CREATE TABLE student (id INT unsigned PRIMARY KEY,name VARCHAR(255),no VARCHAR(50) ); CREATE TABLE course (id INT PRIMARY KEY,…...

Java中IO流类的体系

Java为我们提供了多种多样的IO流,我们可以根据不同的功能及性能要求挑选合适的IO流,如图所示,为Java中IO流类的体系。 从上图发现,很多流都是成对出现的,比如: FileInputStream/FileOutputStream&#xff0…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

2025.6.9总结(利与弊)

凡事都有两面性。在大厂上班也不例外。今天找开发定位问题&#xff0c;从一个接口人不断溯源到另一个 接口人。有时候&#xff0c;不知道是谁的责任填。将工作内容分的很细&#xff0c;每个人负责其中的一小块。我清楚的意识到&#xff0c;自己就是个可以随时替换的螺丝钉&…...

用鸿蒙HarmonyOS5实现国际象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的国际象棋小游戏的完整实现代码&#xff0c;使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├── …...

性能优化中,多面体模型基本原理

1&#xff09;多面体编译技术是一种基于多面体模型的程序分析和优化技术&#xff0c;它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象&#xff0c;通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中&#xff0…...