当前位置: 首页 > news >正文

Meta发布Chameleon模型预览,挑战多模态AI前沿

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

随着生成式AI领域的竞争转向多模态模型,Meta推出了一款名为Chameleon的新模型家族,以回应前沿实验室发布的各类模型。Chameleon被设计为原生多模态模型,而非将不同模态组件拼凑在一起。

虽然Meta尚未发布这些模型,但据报告显示,Chameleon在图像描述和视觉问答(VQA)等任务中表现出色,同时在纯文本任务中也具竞争力。

早期融合多模态模型

目前,创建多模态基础模型的流行方式是将为不同模态训练的模型拼凑在一起。这种方法称为“后期融合”,即AI系统接收不同的模态,用单独的模型编码它们,然后融合编码进行推理。尽管后期融合效果不错,但它限制了模型跨模态整合信息和生成交错图像与文本序列的能力。

Chameleon采用了“早期融合基于token的混合模态”架构,这意味着它从一开始就设计为从交错的图像、文本、代码和其他模态中学习。Chameleon将图像转换为离散的token,就像语言模型处理单词一样。它还使用了由文本、代码和图像token组成的统一词汇表,使得能够对包含图像和文本token的序列应用相同的transformer架构。

据研究人员介绍,与Chameleon最相似的模型是谷歌的Gemini,它也采用了早期融合token的方法。然而,Gemini在生成阶段使用了单独的图像解码器,而Chameleon则是一个端到端模型,既处理又生成token。

“Chameleon的统一token空间使其能够无缝推理并生成交错的图像和文本序列,无需模态特定的组件,”研究人员写道。

Chameleon的架构和训练

尽管早期融合非常有吸引力,但在训练和扩展模型时会面临重大挑战。为了克服这些挑战,研究人员采用了一系列的架构修改和训练技术。在论文中,他们分享了不同实验的细节及其对模型的影响。

Chameleon的训练分两个阶段进行,数据集包含4.4万亿个文本、图像-文本对以及交错的文本和图像序列。研究人员在超过500万小时的Nvidia A100 80GB GPU上训练了一个7-billion和一个34-billion参数版本的Chameleon。

Chameleon的表现

根据论文中报告的实验,Chameleon能够执行多种纯文本和多模态任务。在视觉问答(VQA)和图像描述基准测试中,Chameleon-34B达到了最先进的性能,超越了Flamingo、IDEFICS和Llava-1.5等模型。

研究人员表示,Chameleon在预训练和微调模型评估中,以更少的上下文训练示例和更小的模型尺寸达到了其他模型的性能。

多模态的一个折衷是单模态请求中的性能下降。例如,视觉-语言模型在纯文本提示上的性能往往较低。但Chameleon在纯文本基准测试中仍具竞争力,在常识推理和阅读理解任务中与Mixtral 8x7B和Gemini-Pro等模型相匹敌。

有趣的是,Chameleon能够为混合模态推理和生成解锁新能力,特别是在提示预期混合模态响应时。实验显示,用户总体上更喜欢Chameleon生成的多模态文档。

上周,OpenAI和谷歌都发布了提供丰富多模态体验的新模型。然而,他们并未发布有关模型的详细信息。如果Meta继续按照其策略发布Chameleon的权重,它可能成为私人模型的开放替代方案。

早期融合还可以为更高级的模型研究开辟新方向,特别是随着更多模态的加入。例如,机器人初创公司已经在实验将语言模型整合到机器人控制系统中。早期融合如何改进机器人基础模型也将是一个有趣的研究方向。

“Chameleon代表了实现能够灵活推理并生成多模态内容的统一基础模型愿景的重大一步,”研究人员写道。

相关文章:

Meta发布Chameleon模型预览,挑战多模态AI前沿

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

声压级越大,STIPA 越好,公共广播就越清晰吗?

在公共广播中,有些朋友经常问到是不是声压越大,广播清晰度就越高,下面我从搜集了一些专业技术资料,供大家参考。 一、声压级越大,STIPA 越好吗? 不完全是。最初,人们认为当声压级达到 60 dBA 以…...

基于springboot+vue的4S店车辆管理系统

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...

深入理解 HTTP 缓存

浏览器缓存不是本地存储,要分清。浏览器缓存分为强缓存和协商缓存。本篇文章参考:使用 HTTP 缓存防止不必要的网络请求 讲解之前,我画了个简图来解释浏览器从缓存中获取资源的过程。 1. 强缓存 强缓存是浏览器缓存机制中的一种,…...

upload-labs 通关方法

目录 Less-1(JS前端验证) Less-2(MIME验证) Less-3(黑名单,特殊过滤) Less-4(黑名单验证,.htaccess) Less-5(黑名单,点空格点绕过…...

5-26 Cpp学习笔记

1、如果子类实现了基类的函数,返回值、参数都相同,就覆盖了基类的函数。 2、使用作用域解析运算符来调用基类的函数。myDinner.Swim(); —— 调用子类的。myDinner.Fish::Swim(); —— 调用基类的(基类是Fish) 3、在子类中使用关键字using解除对Fish::…...

YOLOv8_pose的训练、验证、预测及导出[关键点检测实践篇]

1.关键点数据集划分和配置 从上面得到的数据还不能够直接训练,需要按照一定的比例划分训练集和验证集,并按照下面的结构来存放数据,划分代码如下所示,该部分内容和YOLOv8的训练、验证、预测及导出[目标检测实践篇]_yolov8训练测试验证-CSDN博客是重复的,代码如下: …...

架构师必考题--软件系统质量属性

软件系统质量属性 1.质量属性2.质量属性场景描述3.系统架构评估 这个知识点是系统架构师必考的题目,也是案例分析题第一题, 有时候会出现在选择题里面,考的分数也是非常高的。 1.质量属性 属性说明可用性错误检测/恢复/避免性能资源需求/管理…...

使用AWR对电路进行交流仿真---以整流器仿真为例

使用AWR对电路进行交流仿真—以整流器仿真为例 生活不易,喵喵叹气。马上就要上班了,公司的ADS的版权紧缺,主要用的软件都是NI 的AWR,只能趁着现在没事做先学习一下子了,希望不要裁我。 本AWR专栏只是学习的小小记录而…...

在UbuntuLinux系统上安装MySQL和使用

前言 最近开始计划在Ubuntu上写一个webserver的项目,看到一些比较好的类似的项目使用了MySQL,我就打算先把环境搞好跑一下试试,方便后面更进一步的学习。其实在本机windows上我已经有一个mysql,不过 在Unbuntu上安装MySQL 首先…...

React 如何自定义 Hooks

自定义 Hooks React 内部自带了很多 Hooks 例如 useState、useEffect 等等,那么我们为什么还要自定义 Hooks?使用 Hooks 的好处之一就是重用,可以将代码从组件中抽离出来定义为 Hooks,而不用每个组件中重复去写相同的代码。首先是…...

智能家居完结 -- 整体设计

系统框图 前情提要: 智能家居1 -- 实现语音模块-CSDN博客 智能家居2 -- 实现网络控制模块-CSDN博客 智能家居3 - 实现烟雾报警模块-CSDN博客 智能家居4 -- 添加接收消息的初步处理-CSDN博客 智能家居5 - 实现处理线程-CSDN博客 智能家居6 -- 配置 ini文件优化设备添加-CS…...

双指针用法练习题(2024/5/26)

1三数之和 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元…...

Ansible02-Ansible Modules模块详解

目录 写在前面4. Ansible Modules 模块4.1 Ansible常用模块4.1.1 Command模块4.1.2 shell模块4.1.3 scrpit模块4.1.4 file模块4.1.5 copy模块4.1.6 lineinfile模块4.1.7 systemd模块4.1.8 yum模块4.1.9 get_url模块4.1.10 yum_repository模块4.1.11 user模块4.1.12 group模块4.…...

【Python特征工程系列】一文教你使用PCA进行特征分析与降维(案例+源码)

这是我的第287篇原创文章。 一、引言 主成分分析(Principal Component Analysis, PCA)是一种常用的降维技术,它通过线性变换将原始特征转换为一组线性不相关的新特征,称为主成分,以便更好地表达数据的方差。 在特征重要…...

【Linux】Ubuntu系统挂载NAS文件夹

测试系统:Ubuntu24.02 1. 安装必要的软件包 sudo apt update sudo apt install cifs-utils 2. 创建挂载点 sudo mkdir -p /mnt/nas 3. 获取当前用户的 UID 和 GID id -u id -g 4. 挂载:设置用户名/密码/nas地址 sudo mount -t cifs -o username,…...

如何用ai打一场酣畅淋漓的数学建模比赛? 给考研加加分!

文章目录 数学建模比赛1. 数学建模是什么?2. 数学建模分工合作2.1 第一:组队和分工合作2.2 第二:充分的准备2.3 第三:比赛中写论文过程 3. 数学建模基本过程4. 2023全年数学建模竞赛时间轴5. 数学建模-资料大全6. 数学建模实战 数…...

深入浅出MySQL事务实现底层原理

重要概念 事务的ACID 原子性(Atomicity):即不可分割性,事务中的操作要么全不做,要么全做一致性(Consistency):一个事务在执行前后,数据库都必须处于正确的状态&#xf…...

SVM兵王问题

1.流程 前面六个就是棋子的位置,draw就是逼和,后面的数字six就代表,白棋最少用六步就能将死对方。然后呢,可以看一下最后一个有几种情况: 2.交叉测试 leave one out: 留一个样本作测试集,其余…...

yolov5_obb

yolov5_obb: 旋转目标检测从数据制作到终端部署全流程教学...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

Go语言多线程问题

打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

软件工程 期末复习

瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践

前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响,推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下,基于神经血管耦合现象的多模态神经影像方法,通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里,本研…...

自定义线程池1.2

自定义线程池 1.2 1. 简介 上次我们实现了 1.1 版本,将线程池中的线程数量交给使用者决定,并且将线程的创建延迟到任务提交的时候,在本文中我们将对这个版本进行如下的优化: 在新建线程时交给线程一个任务。让线程在某种情况下…...