Meta发布Chameleon模型预览,挑战多模态AI前沿
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

随着生成式AI领域的竞争转向多模态模型,Meta推出了一款名为Chameleon的新模型家族,以回应前沿实验室发布的各类模型。Chameleon被设计为原生多模态模型,而非将不同模态组件拼凑在一起。
虽然Meta尚未发布这些模型,但据报告显示,Chameleon在图像描述和视觉问答(VQA)等任务中表现出色,同时在纯文本任务中也具竞争力。
早期融合多模态模型
目前,创建多模态基础模型的流行方式是将为不同模态训练的模型拼凑在一起。这种方法称为“后期融合”,即AI系统接收不同的模态,用单独的模型编码它们,然后融合编码进行推理。尽管后期融合效果不错,但它限制了模型跨模态整合信息和生成交错图像与文本序列的能力。
Chameleon采用了“早期融合基于token的混合模态”架构,这意味着它从一开始就设计为从交错的图像、文本、代码和其他模态中学习。Chameleon将图像转换为离散的token,就像语言模型处理单词一样。它还使用了由文本、代码和图像token组成的统一词汇表,使得能够对包含图像和文本token的序列应用相同的transformer架构。
据研究人员介绍,与Chameleon最相似的模型是谷歌的Gemini,它也采用了早期融合token的方法。然而,Gemini在生成阶段使用了单独的图像解码器,而Chameleon则是一个端到端模型,既处理又生成token。
“Chameleon的统一token空间使其能够无缝推理并生成交错的图像和文本序列,无需模态特定的组件,”研究人员写道。
Chameleon的架构和训练
尽管早期融合非常有吸引力,但在训练和扩展模型时会面临重大挑战。为了克服这些挑战,研究人员采用了一系列的架构修改和训练技术。在论文中,他们分享了不同实验的细节及其对模型的影响。
Chameleon的训练分两个阶段进行,数据集包含4.4万亿个文本、图像-文本对以及交错的文本和图像序列。研究人员在超过500万小时的Nvidia A100 80GB GPU上训练了一个7-billion和一个34-billion参数版本的Chameleon。
Chameleon的表现
根据论文中报告的实验,Chameleon能够执行多种纯文本和多模态任务。在视觉问答(VQA)和图像描述基准测试中,Chameleon-34B达到了最先进的性能,超越了Flamingo、IDEFICS和Llava-1.5等模型。
研究人员表示,Chameleon在预训练和微调模型评估中,以更少的上下文训练示例和更小的模型尺寸达到了其他模型的性能。
多模态的一个折衷是单模态请求中的性能下降。例如,视觉-语言模型在纯文本提示上的性能往往较低。但Chameleon在纯文本基准测试中仍具竞争力,在常识推理和阅读理解任务中与Mixtral 8x7B和Gemini-Pro等模型相匹敌。
有趣的是,Chameleon能够为混合模态推理和生成解锁新能力,特别是在提示预期混合模态响应时。实验显示,用户总体上更喜欢Chameleon生成的多模态文档。
上周,OpenAI和谷歌都发布了提供丰富多模态体验的新模型。然而,他们并未发布有关模型的详细信息。如果Meta继续按照其策略发布Chameleon的权重,它可能成为私人模型的开放替代方案。
早期融合还可以为更高级的模型研究开辟新方向,特别是随着更多模态的加入。例如,机器人初创公司已经在实验将语言模型整合到机器人控制系统中。早期融合如何改进机器人基础模型也将是一个有趣的研究方向。
“Chameleon代表了实现能够灵活推理并生成多模态内容的统一基础模型愿景的重大一步,”研究人员写道。
相关文章:
Meta发布Chameleon模型预览,挑战多模态AI前沿
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
声压级越大,STIPA 越好,公共广播就越清晰吗?
在公共广播中,有些朋友经常问到是不是声压越大,广播清晰度就越高,下面我从搜集了一些专业技术资料,供大家参考。 一、声压级越大,STIPA 越好吗? 不完全是。最初,人们认为当声压级达到 60 dBA 以…...
基于springboot+vue的4S店车辆管理系统
开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...
深入理解 HTTP 缓存
浏览器缓存不是本地存储,要分清。浏览器缓存分为强缓存和协商缓存。本篇文章参考:使用 HTTP 缓存防止不必要的网络请求 讲解之前,我画了个简图来解释浏览器从缓存中获取资源的过程。 1. 强缓存 强缓存是浏览器缓存机制中的一种,…...
upload-labs 通关方法
目录 Less-1(JS前端验证) Less-2(MIME验证) Less-3(黑名单,特殊过滤) Less-4(黑名单验证,.htaccess) Less-5(黑名单,点空格点绕过…...
5-26 Cpp学习笔记
1、如果子类实现了基类的函数,返回值、参数都相同,就覆盖了基类的函数。 2、使用作用域解析运算符来调用基类的函数。myDinner.Swim(); —— 调用子类的。myDinner.Fish::Swim(); —— 调用基类的(基类是Fish) 3、在子类中使用关键字using解除对Fish::…...
YOLOv8_pose的训练、验证、预测及导出[关键点检测实践篇]
1.关键点数据集划分和配置 从上面得到的数据还不能够直接训练,需要按照一定的比例划分训练集和验证集,并按照下面的结构来存放数据,划分代码如下所示,该部分内容和YOLOv8的训练、验证、预测及导出[目标检测实践篇]_yolov8训练测试验证-CSDN博客是重复的,代码如下: …...
架构师必考题--软件系统质量属性
软件系统质量属性 1.质量属性2.质量属性场景描述3.系统架构评估 这个知识点是系统架构师必考的题目,也是案例分析题第一题, 有时候会出现在选择题里面,考的分数也是非常高的。 1.质量属性 属性说明可用性错误检测/恢复/避免性能资源需求/管理…...
使用AWR对电路进行交流仿真---以整流器仿真为例
使用AWR对电路进行交流仿真—以整流器仿真为例 生活不易,喵喵叹气。马上就要上班了,公司的ADS的版权紧缺,主要用的软件都是NI 的AWR,只能趁着现在没事做先学习一下子了,希望不要裁我。 本AWR专栏只是学习的小小记录而…...
在UbuntuLinux系统上安装MySQL和使用
前言 最近开始计划在Ubuntu上写一个webserver的项目,看到一些比较好的类似的项目使用了MySQL,我就打算先把环境搞好跑一下试试,方便后面更进一步的学习。其实在本机windows上我已经有一个mysql,不过 在Unbuntu上安装MySQL 首先…...
React 如何自定义 Hooks
自定义 Hooks React 内部自带了很多 Hooks 例如 useState、useEffect 等等,那么我们为什么还要自定义 Hooks?使用 Hooks 的好处之一就是重用,可以将代码从组件中抽离出来定义为 Hooks,而不用每个组件中重复去写相同的代码。首先是…...
智能家居完结 -- 整体设计
系统框图 前情提要: 智能家居1 -- 实现语音模块-CSDN博客 智能家居2 -- 实现网络控制模块-CSDN博客 智能家居3 - 实现烟雾报警模块-CSDN博客 智能家居4 -- 添加接收消息的初步处理-CSDN博客 智能家居5 - 实现处理线程-CSDN博客 智能家居6 -- 配置 ini文件优化设备添加-CS…...
双指针用法练习题(2024/5/26)
1三数之和 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元…...
Ansible02-Ansible Modules模块详解
目录 写在前面4. Ansible Modules 模块4.1 Ansible常用模块4.1.1 Command模块4.1.2 shell模块4.1.3 scrpit模块4.1.4 file模块4.1.5 copy模块4.1.6 lineinfile模块4.1.7 systemd模块4.1.8 yum模块4.1.9 get_url模块4.1.10 yum_repository模块4.1.11 user模块4.1.12 group模块4.…...
【Python特征工程系列】一文教你使用PCA进行特征分析与降维(案例+源码)
这是我的第287篇原创文章。 一、引言 主成分分析(Principal Component Analysis, PCA)是一种常用的降维技术,它通过线性变换将原始特征转换为一组线性不相关的新特征,称为主成分,以便更好地表达数据的方差。 在特征重要…...
【Linux】Ubuntu系统挂载NAS文件夹
测试系统:Ubuntu24.02 1. 安装必要的软件包 sudo apt update sudo apt install cifs-utils 2. 创建挂载点 sudo mkdir -p /mnt/nas 3. 获取当前用户的 UID 和 GID id -u id -g 4. 挂载:设置用户名/密码/nas地址 sudo mount -t cifs -o username,…...
如何用ai打一场酣畅淋漓的数学建模比赛? 给考研加加分!
文章目录 数学建模比赛1. 数学建模是什么?2. 数学建模分工合作2.1 第一:组队和分工合作2.2 第二:充分的准备2.3 第三:比赛中写论文过程 3. 数学建模基本过程4. 2023全年数学建模竞赛时间轴5. 数学建模-资料大全6. 数学建模实战 数…...
深入浅出MySQL事务实现底层原理
重要概念 事务的ACID 原子性(Atomicity):即不可分割性,事务中的操作要么全不做,要么全做一致性(Consistency):一个事务在执行前后,数据库都必须处于正确的状态…...
SVM兵王问题
1.流程 前面六个就是棋子的位置,draw就是逼和,后面的数字six就代表,白棋最少用六步就能将死对方。然后呢,可以看一下最后一个有几种情况: 2.交叉测试 leave one out: 留一个样本作测试集,其余…...
yolov5_obb
yolov5_obb: 旋转目标检测从数据制作到终端部署全流程教学...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
