当前位置: 首页 > news >正文

opencl色域变换,处理传递显存数据

在使用ffmpeg解码后的多路解码数据非常慢,还要给AI做行的加速方式是在显存处理数据,在视频拼接融合产品的产品与架构设计中,提出了比较可靠的方式是使用cuda,那么没有cuda的显卡如何处理呢
,比较好的方式是使用opencl来提高数据传输效率

核函数

在OpenCL中,将NV12格式转换为BGR格式通常涉及到对UV分量的处理,nv12 是使用ffmpeg等解码后的直接数据,注意linesize对齐

#define GROUP_SIZE 16// OpenCL kernel to convert NV12 to BGR
__kernel void nv12_to_bgr(__global const uchar *nv12,__global uchar *bgr,int width, int height) {int x = get_global_id(0);int y = get_global_id(1);// Make sure we are not out of boundsif (x < width && y < height) {// Calculate Y, U, and V indicesint yIndex = y * width + x;int uvIndex = width * height + (y / 2) * (width) + (x & ~1); // Use '& ~1' to get even X indices for U/V// Load Y, U, and V valuesuchar yValue = nv12[yIndex];uchar uValue = nv12[uvIndex];uchar vValue = nv12[uvIndex + 1];// Convert YUV to RGBuchar bValue = (uchar)((yValue                  + 1.732446 * (uValue - 128));uchar gValue = (uchar)((yValue - 0.344134 * (vValue - 128) - 0.714136 * (uValue - 128));uchar rValue = (uchar)((yValue + 1.402225 * (vValue - 128));// Pack BGR valuesuchar bgrValue = (bValue << 2) | (gValue >> 4) | (rValue << 6);// Store BGR valuebgr[yIndex] = bgrValue;}
}

cpu上继续

注意错误处理

// 设置OpenCL内核参数
size_t global_work_size[2] = {width, height};
cl_kernel nv12_to_bgr_kernel = ...; // 获取你编译的内核// 设置内核参数
clSetKernelArg(nv12_to_bgr_kernel, 0, sizeof(cl_mem), &nv12_buffer);
clSetKernelArg(nv12_to_bgr_kernel, 1, sizeof(cl_mem), &bgr_buffer);
clSetKernelArg(nv12_to_bgr_kernel, 2, sizeof(int), &width);
clSetKernelArg(nv12_to_bgr_kernel, 3, sizeof(int), &height);// 执行内核
cl_event event;
clEnqueueNDRangeKernel(command_queue, nv12_to_bgr_kernel, 2, NULL, global_work_size, NULL, 0, NULL, &event);// 等待命令执行完毕
clWaitForEvents(1, &event);

针对arm,非显存

用128位的寄存器进行处理。
vld1_u8 从内存中读取88位数据到寄存器
vld1q_u8 从内存中读取16
8位数据到寄存器
vld3q_u8 从内存中读取3个168位数据到寄存器中
vst3q_u8 将三个128位寄存器的数据写到内存中
vld4_u8 从内存中读取4个8
8位数据到寄存器中
vmull_u8 执行两个8*8位无符号整数的乘法操作
vshrn_n_u16 16位无符号整数右移指定的位数
vst1_u8 将128位寄存器中的8位无符号整数元素存储到内存中
vshrq_n_s16 16位整数右移指定的位数
举例


void bgr_to_rgb(uint8_t *bgr, uint8_t *rgb, int width, int height)
{// Ensure BGR and BGR buffers are 16-byte aligned for NEONuint8_t *bgr_aligned = (uint8_t *)(((uintptr_t)bgr + 15) & ~15);uint8_t *rgb_aligned = (uint8_t *)(((uintptr_t)rgb + 15) & ~15);for (int q = 0; q < height * width / 16; q++){// Calculate the index for the current pixelint index = q * 16 * 3;// Load 16 BGR pixels into three vectors.uint8x16x3_t bgr_vector = vld3q_u8(bgr_aligned + index);// Shuffle the bytes to convert from BGR to BGR.uint8x16_t b = bgr_vector.val[2]; // Blueuint8x16_t g = bgr_vector.val[1]; // Greenuint8x16_t r = bgr_vector.val[0]; // Red// Combine the shuffled bytes into a single vector.uint8x16x3_t rgb_vector = {b, g, r};// Store the result.vst3q_u8(rgb_aligned + index, rgb_vector);}
}

使用gstreamer

使用gstremaer pipeline技术写好插件,直接操作显存

相关文章:

opencl色域变换,处理传递显存数据

在使用ffmpeg解码后的多路解码数据非常慢&#xff0c;还要给AI做行的加速方式是在显存处理数据&#xff0c;在视频拼接融合产品的产品与架构设计中&#xff0c;提出了比较可靠的方式是使用cuda&#xff0c;那么没有cuda的显卡如何处理呢 &#xff0c;比较好的方式是使用opencl来…...

COD论文笔记 Boundary-Guided Camouflaged Object Detection

动机 挑战性任务&#xff1a;伪装物体检测&#xff08;COD&#xff09;是一个重要且具有挑战性的任务&#xff0c;因为伪装物体往往与背景高度相似&#xff0c;使得准确识别和分割非常困难。现有方法的不足&#xff1a;现有的深度学习方法难以有效识别伪装物体的结构和细节&am…...

java内存模型介绍

Java内存模型&#xff08;Java Memory Model&#xff0c;JMM&#xff09;是一种规范&#xff0c;它定义了Java虚拟机&#xff08;JVM&#xff09;如何在内存中存储和访问Java对象的方式&#xff0c;以及多个线程如何访问这些对象时的规则。它的主要目标是定义程序中的各个线程如…...

CSS语法介绍

文章目录 前言一、CSS引入方式1.行内操作2.内部操作3.外部操作 二、常用选择器1.标签选择器2.类选择器3.id选择器4.群组选择器5.后代选择器 三、字体常用设置1.字体类型2.字体大小3.字体样式4.字体粗细 四、div盒子模型1.盒子边框2.外边距3.内边距4.浮动 综合实战案例 前言 以…...

Jeecg | 完成配置后,如何启动整个项目?

前端启动步骤&#xff1a; 1. 以管理员身份打开控制台&#xff0c;切换到前端项目目录。 2. 输入 pnpm install 3. 输入 pnpm dev 4. 等待前端成功运行。 可以看到此时前端已经成功启动。 后端启动步骤&#xff1a; 1. 启动 mysql 服务器。 管理员身份打开控制台&#…...

Kubectl 的使用——k8s陈述式资源管理

一、kebuctl简介: kubectl 是官方的CLI命令行工具&#xff0c;用于与 apiserver 进行通信&#xff0c;将用户在命令行输入的命令&#xff0c;组织并转化为 apiserver 能识别的信息&#xff0c;进而实现管理 k8s 各种资源的一种有效途径。 对资源的增、删、查操作比较方便&…...

多天线技术

多天线技术可以分为两类&#xff1a;分集技术和空间复用技术。分集技术利用多天线接收或者发射载有同一信息的信号&#xff0c;提高传输的可靠性。分集技术是将瑞利衰落无线信道换成更加稳定的信道。 发射端未知CSI时的信道容量 发射端已知CSI时的信道容量 信道估计&#xff…...

Meta发布Chameleon模型预览,挑战多模态AI前沿

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

声压级越大,STIPA 越好,公共广播就越清晰吗?

在公共广播中&#xff0c;有些朋友经常问到是不是声压越大&#xff0c;广播清晰度就越高&#xff0c;下面我从搜集了一些专业技术资料&#xff0c;供大家参考。 一、声压级越大&#xff0c;STIPA 越好吗&#xff1f; 不完全是。最初&#xff0c;人们认为当声压级达到 60 dBA 以…...

基于springboot+vue的4S店车辆管理系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…...

深入理解 HTTP 缓存

浏览器缓存不是本地存储&#xff0c;要分清。浏览器缓存分为强缓存和协商缓存。本篇文章参考&#xff1a;使用 HTTP 缓存防止不必要的网络请求 讲解之前&#xff0c;我画了个简图来解释浏览器从缓存中获取资源的过程。 1. 强缓存 强缓存是浏览器缓存机制中的一种&#xff0c;…...

upload-labs 通关方法

目录 Less-1&#xff08;JS前端验证&#xff09; Less-2&#xff08;MIME验证&#xff09; Less-3&#xff08;黑名单&#xff0c;特殊过滤&#xff09; Less-4&#xff08;黑名单验证&#xff0c;.htaccess&#xff09; Less-5&#xff08;黑名单&#xff0c;点空格点绕过…...

5-26 Cpp学习笔记

1、如果子类实现了基类的函数&#xff0c;返回值、参数都相同&#xff0c;就覆盖了基类的函数。 2、使用作用域解析运算符来调用基类的函数。myDinner.Swim(); —— 调用子类的。myDinner.Fish::Swim(); —— 调用基类的(基类是Fish) 3、在子类中使用关键字using解除对Fish::…...

YOLOv8_pose的训练、验证、预测及导出[关键点检测实践篇]

1.关键点数据集划分和配置 从上面得到的数据还不能够直接训练,需要按照一定的比例划分训练集和验证集,并按照下面的结构来存放数据,划分代码如下所示,该部分内容和YOLOv8的训练、验证、预测及导出[目标检测实践篇]_yolov8训练测试验证-CSDN博客是重复的,代码如下: …...

架构师必考题--软件系统质量属性

软件系统质量属性 1.质量属性2.质量属性场景描述3.系统架构评估 这个知识点是系统架构师必考的题目&#xff0c;也是案例分析题第一题&#xff0c; 有时候会出现在选择题里面&#xff0c;考的分数也是非常高的。 1.质量属性 属性说明可用性错误检测/恢复/避免性能资源需求/管理…...

使用AWR对电路进行交流仿真---以整流器仿真为例

使用AWR对电路进行交流仿真—以整流器仿真为例 生活不易&#xff0c;喵喵叹气。马上就要上班了&#xff0c;公司的ADS的版权紧缺&#xff0c;主要用的软件都是NI 的AWR&#xff0c;只能趁着现在没事做先学习一下子了&#xff0c;希望不要裁我。 本AWR专栏只是学习的小小记录而…...

在UbuntuLinux系统上安装MySQL和使用

前言 最近开始计划在Ubuntu上写一个webserver的项目&#xff0c;看到一些比较好的类似的项目使用了MySQL&#xff0c;我就打算先把环境搞好跑一下试试&#xff0c;方便后面更进一步的学习。其实在本机windows上我已经有一个mysql&#xff0c;不过 在Unbuntu上安装MySQL 首先…...

React 如何自定义 Hooks

自定义 Hooks React 内部自带了很多 Hooks 例如 useState、useEffect 等等&#xff0c;那么我们为什么还要自定义 Hooks&#xff1f;使用 Hooks 的好处之一就是重用&#xff0c;可以将代码从组件中抽离出来定义为 Hooks&#xff0c;而不用每个组件中重复去写相同的代码。首先是…...

智能家居完结 -- 整体设计

系统框图 前情提要: 智能家居1 -- 实现语音模块-CSDN博客 智能家居2 -- 实现网络控制模块-CSDN博客 智能家居3 - 实现烟雾报警模块-CSDN博客 智能家居4 -- 添加接收消息的初步处理-CSDN博客 智能家居5 - 实现处理线程-CSDN博客 智能家居6 -- 配置 ini文件优化设备添加-CS…...

双指针用法练习题(2024/5/26)

1三数之和 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...