当前位置: 首页 > news >正文

【Python】 XGBoost模型的使用案例及原理解析


原谅把你带走的雨天
在渐渐模糊的窗前
每个人最后都要说再见
原谅被你带走的永远
微笑着容易过一天
也许是我已经 老了一点
那些日子你会不会舍不得
思念就像关不紧的门
空气里有幸福的灰尘
否则为何闭上眼睛的时候
又全都想起了
谁都别说
让我一个人躲一躲
你的承诺
我竟然没怀疑过
反反覆覆
要不是当初深深深爱过
我试着恨你
却想起你的笑容
                     🎵 陈楚生/单依纯《原谅》


XGBoost(Extreme Gradient Boosting)是一种常用的梯度提升树(GBDT)算法的高效实现,广泛应用于各类数据科学竞赛和实际项目中。它的优势在于高效、灵活且具有很强的性能。下面,我们通过一个实际案例来说明如何使用XGBoost模型,并解释其原理。

案例背景

假设我们有一个客户流失预测的数据集,其中包含客户的特征数据及其是否流失的标注(流失为1,未流失为0)。我们需要构建一个XGBoost模型来预测客户是否会流失。

数据准备

首先,我们加载并准备数据。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, accuracy_score
import xgboost as xgb# 加载数据
df = pd.read_csv('customer_churn.csv')# 特征工程和数据预处理
X = df.drop('churn', axis=1)
y = df['churn']# 将数据分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
模型训练
使用XGBoost进行模型训练。python
复制代码
# 转换数据格式为DMatrix,这是XGBoost高效的数据格式
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)# 设置XGBoost参数
params = {'booster': 'gbtree','objective': 'binary:logistic','eval_metric': 'logloss','eta': 0.1,'max_depth': 6,'scale_pos_weight': 80,  # 处理不平衡数据,正负样本比例为1:80'subsample': 0.8,'colsample_bytree': 0.8,'seed': 42
}# 训练模型
num_round = 100
bst = xgb.train(params, dtrain, num_round)# 模型预测
y_pred_prob = bst.predict(dtest)
y_pred = (y_pred_prob > 0.5).astype(int)# 评估模型
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(classification_report(y_test, y_pred))

XGBoost原理解析

XGBoost是一种基于梯度提升(Gradient Boosting)算法的集成学习方法。梯度提升算法通过构建多个弱学习器(通常是决策树)来提升模型的预测性能。以下是XGBoost的关键原理:

  1. 加法模型和迭代训练:梯度提升是通过逐步迭代训练多个弱学习器(树模型),每个新的树模型学习前一轮残差(预测误差),即试图纠正前一轮模型的错误。

  2. 目标函数:XGBoost的目标函数由两部分组成:损失函数和正则化项。损失函数衡量模型的预测误差,正则化项控制模型的复杂度,防止过拟合。
    在这里插入图片描述

  3. 缺失值处理:XGBoost可以自动处理数据中的缺失值,通过在训练过程中找到最优的缺失值分裂方向。

  4. 并行计算:XGBoost在构建树的过程中,利用特征并行和数据并行技术,极大地提高了计算效率。
    在这里插入图片描述

  5. 缺失值处理:XGBoost可以自动处理数据中的缺失值,通过在训练过程中找到最优的缺失值分裂方向。

  6. 并行计算:XGBoost在构建树的过程中,利用特征并行和数据并行技术,极大地提高了计算效率。

总结

XGBoost是一种强大的梯度提升算法,通过集成多个弱学习器来提高模型的预测性能。其高效的实现和诸多优化技术使其在实际应用中表现优异。通过调节参数如学习率、最大深度和正则化参数,XGBoost能够处理不同类型的任务,尤其是在处理不平衡数据集时具有很好的性能表现。在本案例中,我们展示了如何使用XGBoost进行客户流失预测,并解释了其背后的关键原理。

相关文章:

【Python】 XGBoost模型的使用案例及原理解析

原谅把你带走的雨天 在渐渐模糊的窗前 每个人最后都要说再见 原谅被你带走的永远 微笑着容易过一天 也许是我已经 老了一点 那些日子你会不会舍不得 思念就像关不紧的门 空气里有幸福的灰尘 否则为何闭上眼睛的时候 又全都想起了 谁都别说 让我一个人躲一躲 你的承诺 我竟然没怀…...

Java中print,println,printf的功能以及区别

在Java中,System.out.print, System.out.println, 和 System.out.printf 都是用于在控制台输出的方法,但它们在使用和功能上有所不同。 System.out.print: * 功能:将指定的内容输出到控制台,但不换行。 * 示例:Sy…...

vue3+electron+typescript 项目安装、打包、多平台踩坑记录

环境说明 这里的测试如果没有其他特别说明的,就是在win10/i7环境,64位 创建项目 vite官方是直接支持创建electron项目的,所以,这里就简单很多了。我们已经不需要向开始那样自己去慢慢搭建 yarn create vite这里使用yarn创建&a…...

实际案例分析

实际案例分析 一、数据准备与特征工程 1.1数据收集 在实际案例分析中,首先需要收集相关数据。数据来源可以包括公开数据集、企业内部数据、互联网爬虫抓取等。为了保证数据的质量和准确性,数据收集过程中需遵循以下原则: -针对性强&#…...

JAVA实现图书管理系统(初阶)

一.抽象出对象: 1.要有书架,图书,用户(包括普通用户,管理员用户)。根据这些我们可以建立几个包,来把繁杂的代码分开,再通过一个类来把这些,对象整合起来实现系统。说到整合&#xf…...

【Torch学习笔记】

作者:zjk 和 的区别是逐元素相乘,是矩阵相乘 cat stack 的区别 cat stack 是用于沿新维度将多个张量堆叠在一起的函数。它要求所有输入张量具有相同的形状,并在指定的新维度上进行堆叠。...

LeetCode算法题:42. 接雨水(Java)

题目描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3…...

LINGO:存贮问题

存贮模型中的基本概念 模型: 基本要素: (1)需求率:单位时间内对某种物品的需求量,用D表示。 (2)订货批量:一次订货中,包含某种货物的数量,用 Q表…...

《微服务王国的守护者:Spring Cloud Dubbo的奇幻冒险》

5. 经典问题与解决方案 5.3 服务追踪与链路监控 在微服务架构的广袤宇宙中,服务间的调用关系错综复杂,如同一张庞大的星系网络。当一个请求穿越这个星系,经过多个服务节点时,如何追踪它的路径,如何监控整个链路的健康…...

(九)npm 使用

视频链接:尚硅谷2024最新版微信小程序 文章目录 使用 npm 包自定义构建 npmVant Weapp 组件库的使用Vant Weapp 组件样式覆盖使用 npm 包 目前小程序已经支持使用 npm 安装第三方包,因为 node_modules 目录中的包不会参与小程序项目的编译、上传和打包, 因此在小程序项目中要…...

Thinkphp5内核宠物领养平台H5源码

源码介绍 Thinkphp5内核流浪猫流浪狗宠物领养平台H5源码 可封装APP,适合做猫狗宠物类的发信息发布,当然懂的修改一下,做其他信息发布也是可以的。 源码预览 源码下载 https://download.csdn.net/download/huayula/89361685...

一、Elasticsearch介绍与部署

目录 一、什么是Elasticsearch 二、安装Elasticsearch 三、配置es 四、启动es 1、下载安装elasticsearch的插件head 2、在浏览器,加载扩展程序 3、运行扩展程序 4、输入es地址就可以了 五、Elasticsearch 创建、查看、删除索引、创建、查看、修改、删除文档…...

NL6621 实现获取天气情况

一、主要完成的工作 1、建立TASK INT32 main(VOID) {/* system Init */SystemInit();OSTaskCreate(TestAppMain, NULL, &sAppStartTaskStack[NST_APP_START_TASK_STK_SIZE -1], NST_APP_TASK_START_PRIO); OSStart();return 1; } 2、application test task VOID TestAp…...

SpringCloud配置文件bootrap

解决方案&#xff1a; 情况一、SpringBoot 版本 小于 2.4.0 版本&#xff0c;添加以下依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-context</artifactId> </dependency> 情况二、SpringBoot…...

经典面试题:进程、线程、协程开销问题,为什么进程切换的开销比线程的大?

上下文切换的过程&#xff1f; 上下文切换是操作系统在将CPU从一个进程切换到另一个进程时所执行的过程。它涉及保存当前执行进程的状态并加载下一个将要执行的进程的状态。下面是上下文切换的详细过程&#xff1a; 保存当前进程的上下文&#xff1a; 当操作系统决定切换到另…...

鸿蒙 DevEco Studio 3.1 Release 下载sdk报错的解决办法

鸿蒙 解决下载SDK报错的解决方法 最近在学习鸿蒙开发&#xff0c;以后也会记录一些关于鸿蒙相关的问题和解决方法&#xff0c;希望能帮助到大家。 总的来说一般有下面这样的报错 报错一&#xff1a; Components to install: - ArkTS 3.2.12.5 - System-image-phone 3.1.0.3…...

QGIS开发笔记(二):Windows安装版二次开发环境搭建(上):安装OSGeo4W运行依赖其Qt的基础环境Demo

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/139136356 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...

设计一套Kafka到RocketMQ的双写+双读技术方案,实现无缝迁移!

设计一套Kafka到RocketMQ的双写双读技术方案&#xff0c;实现无缝迁移&#xff01; 1、背景2、方案3、具体逻辑 1、背景 假设你们公司本来线上的MQ用的主要是Kafka&#xff0c;现在要从Kafka迁移到RocketMQ去&#xff0c;那么这个迁移的过程应该怎么做呢&#xff1f;应该采用什…...

Mysql下Limit注入方法(此方法仅适用于5.0.0<mysql<5.6.6的版本)

SQL语句类似下面这样&#xff1a;&#xff08;此方法仅适用于5.0.0<mysql<5.6.6的版本&#xff09; SELECT field FROM table WHERE id > 0 ORDER BY id LIMIT &#xff08;注入点&#xff09; 问题的关键在于&#xff0c;语句中有 order by 关键字&#xff0c;mysql…...

Makefile学习笔记15|u-boot顶层Makefile01

Makefile学习笔记15|u-boot顶层Makefile01 希望看到这篇文章的朋友能在评论区留下宝贵的建议来让我们共同成长&#xff0c;谢谢。 这里是目录 版本号信息 # SPDX-License-Identifier: GPL-2.0VERSION 2024 PATCHLEVEL 01 SUBLEVEL EXTRAVERSION -rc4 NAME 这里定义了u-bo…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...