当前位置: 首页 > news >正文

【Python设计模式04】策略模式

策略模式(Strategy Pattern)是一种行为型设计模式,它定义了一系列算法,并将每个算法封装起来,使它们可以互相替换。策略模式让算法的变化不会影响使用算法的客户端,使得算法可以独立于客户端的变化而变化。

策略模式的结构

策略模式主要包含以下角色:

  1. 策略接口(Strategy):定义算法的接口。
  2. 具体策略类(Concrete Strategy):实现策略接口的具体算法。
  3. 上下文类(Context):使用策略对象的上下文,维护对策略对象的引用,并在需要时调用策略对象的方法。

示例

假设我们要设计一个计算不同类型折扣的系统。我们可以使用策略模式来实现这一功能。

定义策略接口
from abc import ABC, abstractmethodclass DiscountStrategy(ABC):@abstractmethoddef apply_discount(self, price: float) -> float:pass
实现具体策略类
class NoDiscount(DiscountStrategy):def apply_discount(self, price: float) -> float:return priceclass PercentageDiscount(DiscountStrategy):def __init__(self, percentage: float):self.percentage = percentagedef apply_discount(self, price: float) -> float:return price * (1 - self.percentage / 100)class FixedAmountDiscount(DiscountStrategy):def __init__(self, amount: float):self.amount = amountdef apply_discount(self, price: float) -> float:return max(0, price - self.amount)
定义上下文类
class PriceCalculator:def __init__(self, strategy: DiscountStrategy):self.strategy = strategydef calculate_price(self, price: float) -> float:return self.strategy.apply_discount(price)
使用策略模式
def main():original_price = 100.0no_discount = NoDiscount()ten_percent_discount = PercentageDiscount(10)five_dollar_discount = FixedAmountDiscount(5)calculator = PriceCalculator(no_discount)print(f"Original price: ${original_price}, No discount: ${calculator.calculate_price(original_price)}")calculator.strategy = ten_percent_discountprint(f"Original price: ${original_price}, 10% discount: ${calculator.calculate_price(original_price)}")calculator.strategy = five_dollar_discountprint(f"Original price: ${original_price}, $5 discount: ${calculator.calculate_price(original_price)}")if __name__ == "__main__":main()

策略模式的优缺点

优点
  1. 开闭原则:可以在不修改上下文类的情况下引入新的策略,实现算法的独立变化。
  2. 消除条件语句:通过使用策略模式,可以避免在上下文类中使用大量的条件语句。
  3. 提高代码复用性:不同的策略类可以复用相同的算法接口,提高代码的复用性和可维护性。
缺点
  1. 增加类的数量:每个策略都是一个单独的类,可能会增加类的数量,导致代码复杂度增加。
  2. 策略切换的开销:在运行时切换策略可能会带来一些性能开销。

策略模式的适用场景

  1. 算法需要在运行时选择:当一个系统需要在运行时从多个算法中选择一个时,可以使用策略模式。
  2. 避免条件语句:当一个类中包含大量与算法选择相关的条件语句时,可以使用策略模式消除这些条件语句。
  3. 需要重用算法:当多个类需要复用相同的算法时,可以将这些算法提取到独立的策略类中,通过策略模式进行重用。

总结

策略模式是一种行为型设计模式,通过定义一系列算法并将每个算法封装起来,使它们可以互相替换,从而实现算法的独立变化和复用。策略模式可以提高代码的灵活性和可维护性,适用于算法需要在运行时选择或消除条件语句的场景。合理使用策略模式,可以显著提高代码的质量和设计水平。

相关文章:

【Python设计模式04】策略模式

策略模式(Strategy Pattern)是一种行为型设计模式,它定义了一系列算法,并将每个算法封装起来,使它们可以互相替换。策略模式让算法的变化不会影响使用算法的客户端,使得算法可以独立于客户端的变化而变化。…...

私域用户画像分析:你必须知道的3个关键点!

在互联网时代的变革中,私域流量成为越来越多企业的关注焦点。而了解私域用户画像是建立精准营销策略的关键一步。 今天,就给大家分享私域用户画像分析的三个关键点,让大家都能更好地进行用户画像分析。 1、市场需求 理解市场需求是把握用户…...

【MATLAB源码-第74期】基于matlab的OFDM-IM索引调制系统不同频偏误码率对比,对比OFDM系统。

操作环境: MATLAB 2022a 1、算法描述 OFDM-IM索引调制技术是一种新型的无线通信技术,它将正交频分复用(OFDM)和索引调制(IM)相结合,以提高频谱效率和系统容量。OFDM-IM索引调制技术的基本思想…...

优于其他超导量子比特数千倍!猫态量子比特实现超过十秒的受控比特翻转时间

内容来源:量子前哨(ID:Qforepost) 文丨娴睿/慕一 排版丨沛贤 深度好文:2000字丨8分钟阅读 摘要:量子计算公司Alice & Bob和QUANTIC团队(国立巴黎高等矿业学院PSL分校、巴黎高等师范学院和…...

QtXlsx库编译使用

文章目录 一、前言二、Windows编译使用2.1 用法①:QtXlsx作为Qt的附加模块2.1.1 检验是否安装Perl2.1.2 下载并解压QtXlsx源码2.1.3 MinGW 64-bit安装模块2.1.4 测试 2.2 用法②:直接使用源码 三、Linus编译使用3.1、安装Qt5开发软件包:qtbas…...

LeetCode题练习与总结:二叉树的层序遍历Ⅱ--107

一、题目描述 给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历) 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[…...

WIFI国家码设置的影响

记录下工作中关于国家码设置对WIFI的影响,以SKYLAB的SKW99和SDZ202模组为例进行说明。对应到日常,就是我们经常提及手机是“美版”“港版”等,它们的wifi国家码是不同的,各版本在wifi使用中遇到的各种情况与下面所述是吻合的。 现…...

2024年软考高项-信息系统管理师介绍-备考-考试内容-通过攻略

介绍 以下是计算机软件考试的资格设置,本文说的是高级资格中的信息系统项目管理师(简称"高项"),是比较热门和好考的选择,与中级的"系统集成项目管理工程师"有大部分的知识重叠交叉,中级考了"系统集成项…...

Python知识点复习

文章目录 Input & OutputVariables & Data typesPython字符串重复(字符串乘法)字符串和数字连接在一起print时,要强制类型转换int为str用input()得到的用户输入,是str类型,如果要以int形式计算的话&#xff0c…...

GeoScene产品学习视频收集

1、易智瑞运营的极思课堂https://www.geosceneonline.cn/learn/library 2、历年易智瑞技术公开课视频资料 链接:技术公开课-易智瑞信息技术有限公司,GIS/地理信息系统,空间分析-制图-位置智能-地图 3、一些关于GeoScene系列产品和技术操作的视…...

51单片机的最小系统详解

51单片机的最小系统详解 1. 引言 在嵌入式系统中,51单片机被广泛应用于各种小型控制器和嵌入式开发板中。相信很多人都接触过51单片机,但是对于51单片机的最小系统却了解得不够深入。本文将从振荡电路、电源模块、复位电路、LED指示灯和调试接口五个方面详细介绍51单片机的…...

路径规划搜路算法有哪些?

路径规划搜索算法是帮助移动机器人或自动化系统在环境中从起点导航至终点的计算方法。以下是一些常见的路径规划搜索算法: Dijkstra算法:一种经典的最短路径搜索算法,适用于没有负权边的图。 A*算法:一种启发式搜索算法&#xff…...

Hadoop学习之hdfs的操作

Hadoop学习之hdfs的操作 1.将HDFS中的文件复制到本地 package com.shujia.hdfs;import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.After; import org.junit.Before; import org.j…...

DBAPI怎么进行数据格式转换

DBAPI如何进行数据格式的转换 假设现在有个API,根据学生id查询学生信息,访问API查看数据格式如下 {"data":[{"name":"Michale","phone_number":null,"id":77,"age":55}],"msg"…...

Oracle JSON 函数详解与实战

Oracle 数据库提供了丰富的 JSON 函数集,使得开发者可以高效地处理 JSON 数据。本文将详细介绍这些函数,包括它们的语法、使用场景、具体示例,以及在实际项目中的应用。 文章目录 JSON_VALUE语法参数说明示例 JSON_QUERY语法示例 JSON_TABLE语…...

C#面:请解释转发与跳转的区别

在C#中,转发(forwarding)和跳转(jumping)是两种不同的控制流程操作。 转发 是指将控制权从一个方法或函数转移到另一个方法或函数。在转发中,程序会将当前的执行状态传递给另一个方法,并在该方…...

Java+IDEA+SpringBoot药物不良反应ADR智能监测系统源码 ADR智能化监测系统源码

JavaIDEASpringBoot药物不良反应ADR智能监测系统源码 ADR智能化监测系统源码 药物不良反应(Adverse Drug Reaction,ADR)是指在使用合格药品时,在正常的用法和用量下出现的与用药目的无关的有害反应。这些反应往往因药物种类、使用…...

linux系统模拟资源消耗的简单手段

当我们在做系统性能,稳定性,高可用等特殊场景的测试时,往往要对计算机的硬件资源做出比较苛刻的限制,因此需要最简便的办法增加CPU,内存,磁盘,网络等硬件环境的资源压力。下面介绍实现这些操作的…...

吉林大学软件工程简答题整理

1.6种软件过程模型列举,及优缺点(每个都从时间、质量、过程、本身特点去考虑) 瀑布模型 优点缺点V模型 优点:缺点: 原型模型 优点:演化模型 建增模型 优点缺点螺旋模型 优点缺点喷泉模型 RUP、敏捷工程、…...

爬山算法介绍

目录 1.概述 2.产生 3.定义 4.优缺点 5.应用示例 6.未来展望 7.示例代码 1.概述 爬山算法是一种简单的启发式搜索算法,从起始点开始,每次选择当前位置邻域内的最优解作为下一个位置,直到达到目标点或无法继续前进。爬山算法的基本思想…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四&#xff…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...

生成对抗网络(GAN)损失函数解读

GAN损失函数的形式: 以下是对每个部分的解读: 1. ⁡, ​ :这个部分表示生成器(Generator)G的目标是最小化损失函数。 :判别器(Discriminator)D的目标是最大化损失函数。 GAN的训…...

结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案

以下是一个结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案,包含完整数学推导、PyTorch/TensorFlow双框架实现代码及对比实验分析。 基于PINN的反应扩散方程稀疏数据预测与大规模数据泛化能力研究 1. 问题定义与数学模型 1.1 反应扩散方程 考虑标…...

Ansible+Zabbix-agent2快速实现对多主机监控

ansible Ansible 是一款开源的自动化工具,用于配置管理(Configuration Management)、应用部署(Application Deployment)、任务自动化(Task Automation)和编排(Orchestration&#xf…...