当前位置: 首页 > news >正文

18.多分类问题代码实现

在机器学习中,多分类问题是一类常见的问题,它涉及到将输入数据划分为多个类别中的一个。例如,在图像识别中,我们可能需要将图像分为不同的类别,如手写数字识别(MNIST数据集)就是将手写数字图像分类为0-9的十个数字。本文将介绍如何使用PyTorch框架来构建一个简单的神经网络模型来解决多分类问题,并以MNIST数据集为例进行说明。

数据集

MNIST是一个包含手写数字图像的大型数据集,由NIST(美国国家标准与技术研究院)发起整理,包含了60,000个训练样本和10,000个测试样本。每个样本都是一张28x28像素的灰度图像,表示一个0-9之间的手写数字。

构建神经网络模型

首先,我们需要导入必要的库,并定义神经网络模型。这里我们将使用一个简单的全连接神经网络,包含两个隐藏层和一个输出层。

import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28 * 28, 500) self.fc2 = nn.Linear(500, 100) self.fc3 = nn.Linear(100, 10) def forward(self, x): x = x.view(-1, 28 * 28) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return torch.log_softmax(x, dim=1) # 实例化模型 model = Net()

数据加载和预处理

接下来,我们需要加载MNIST数据集,并进行必要的预处理。这里我们使用torchvision.datasets.MNIST来加载数据集,并使用torch.utils.data.DataLoader来加载数据。

# 数据预处理:转换为Tensor并归一化  
transform = transforms.Compose([  transforms.ToTensor(),  transforms.Normalize((0.5,), (0.5,))  
])  # 加载训练集和测试集  
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)  
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)  testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)  
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)

定义损失函数和优化器

对于多分类问题,我们通常使用交叉熵损失函数(CrossEntropyLoss)。在PyTorch中,nn.CrossEntropyLoss结合了LogSoftmax和NLLLoss,所以我们不需要在模型输出时显式使用LogSoftmax。

对于优化器,我们选择随机梯度下降(SGD)。

# 定义损失函数和优化器  
criterion = nn.CrossEntropyLoss()  
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

训练模型

现在我们可以开始训练模型了。在每个训练周期(epoch)中,我们将遍历整个训练集,计算损失,反向传播梯度,并更新模型参数。

# 训练模型  
num_epochs = 10  
for epoch in range(num_epochs):  for i, (images, labels) in enumerate(trainloader, 0):  # 清零梯度缓存  optimizer.zero_grad()  # 前向传播  outputs = model(images)  loss = criterion(outputs, labels)  # 反向传播和优化  loss.backward()  optimizer.step()  if (i+1) % 1000 == 0:  print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(trainloader)}], Loss: {loss.item()}')  print('Finished Training')

评估模型

训练完成后,我们可以使用测试集来评估模型的性能。这里我们计算了模型在测试集上的准确率。

# 评估模型  
correct = 0  
total = 0  
with torch.no_grad():  # 不需要计算梯度,节省内存和计算资源  for images, labels in testloader:  outputs = model(images)  _, predicted = torch.max(outputs.data, 1)  # 获取预测结果中概率最大的类别索引  total += labels.size(0)  # 总样本数  correct += (predicted == labels).sum().item()  # 正确预测的样本数  print(f'Accuracy of the network on the 10000 test images: {100 * correct / total} %')

总结

本文介绍了如何使用PyTorch框架来构建和训练一个用于多分类问题的神经网络模型。我们以MNIST手写数字数据集为例,展示了从数据加载和预处理、模型定义、损失函数和优化器选择,到模型训练和评估的整个流程。

在实际应用中,我们可以根据具体的问题和数据集来调整模型的结构和参数,以获得更好的性能。此外,还可以使用更高级的技术和策略来优化模型的训练和评估过程,例如数据增强、正则化、学习率调整等。

通过本文的介绍,读者应该能够掌握使用PyTorch进行多分类问题建模的基本流程和关键技术,为后续的深度学习项目打下坚实的基础。

相关文章:

18.多分类问题代码实现

在机器学习中,多分类问题是一类常见的问题,它涉及到将输入数据划分为多个类别中的一个。例如,在图像识别中,我们可能需要将图像分为不同的类别,如手写数字识别(MNIST数据集)就是将手写数字图像分…...

实时通信的方式——WebRTC

文章目录 基于WebRTC实现音视频通话P2P通信原理如何发现对方? 不同的音视频编解码能力如何沟通?(媒体协商SDP)如何联系上对方?(网络协商) 常用的API音视频采集getUserMedia核心对象RTCPeerConne…...

Android 使用 ActivityResultLauncher 申请权限

前面介绍了 Android 运行时权限。 其中,申请权限的步骤有些繁琐,需要用到:ActivityCompat.requestPermissions 函数和 onRequestPermissionsResult 回调函数,今天就借助 ActivityResultLauncher 来简化书写。 步骤1:创…...

如何将前端项目打包并部署到不同服务器环境

学习源码可以看我的个人前端学习笔记 (github.com):qdxzw/frontlearningNotes 觉得有帮助的同学,可以点心心支持一下哈(笔记是根据b站尚硅谷的前端讲师【张天禹老师】整理的,用于自己复盘,有需要学习的可以去b站学习原版视频&…...

什么样的展馆场馆才是科技满满?就差一张智慧场馆大屏

随着科技的飞速发展,传统的场馆展示方式已经无法满足现代人对信息获取和体验的需求。智慧场馆大屏作为一种新型的展示方式,应运而生。它将高清大屏显示技术、智能交互技术、数据分析技术等融为一体,为观众带来更加丰富、生动的展示体验。 一…...

python核心编程(二)

python面向对象 一、基本理论二、 面向对象在python中实践2.1 如何去定义类2.2 通过类创建对象2.3 属性相关2.4 方法相关 三、python对象的生命周期,以及周期方法3.1 概念3.2 监听对象的生命周期 四、面向对象的三大特性4.1 封装4.2 继承4.2.1 概念4.2.1 目的4.2.2 分类4.2.3 t…...

【wiki知识库】02.wiki知识库SpringBoot后端的准备

📝个人主页:哈__ 期待您的关注 目录 一、🔥今日目标 二、📂打开SpringBoot项目 2.1 导入所需依赖 2.2修改application.yml配置文件 2.3导入MybatisPlus逆向工程工具 2.4创建一个公用的返回值 2.5创建CopyUtil工具类 2.6创建…...

python tuple(元组)

python list(列表)、创建、访问、内置index、判断in、not in、添加元素、insert、append、extend、列表排序、颠倒顺序、删除元素、remove、pop、clear-CSDN博客 目录 tuple: 元组的主要特点包括: tuple的创建 单个元组需要注…...

opencv调用摄像头保存视频

opencv调用摄像头保存视频 文章目录 opencv调用摄像头保存视频保存视频(采用默认分辨率640 x 480)保存视频(指定分辨率,例1280720) 保存视频(采用默认分辨率640 x 480) import cv2 import time # 定义视频捕捉对象 cap cv2.Vide…...

STM32定时器四大功能之定时器编码接口

1什么是编码器接口? 编码器接口接受编码器的正交信号,根据编码器产生的正交信号脉冲控制CNT的自增和自减,从而指示编码器的旋转方向和旋转速度。 每个高级定时器和通用定时器都有一个编码器接口,同时正交编码器产生的正交信号分…...

全国各城市间驾车耗时和距离矩阵数据集(更新至2022年)

数据简介:城市之间距离越远,耗时越长。经济发达地区的交通状况较好。各城市之间的驾车耗时和距离存在差异。有些城市之间的交通非常便捷,而有些城市之间的交通则较为不便。这表明中国的交通网络发展尚不平衡,需进一步优化。特别是…...

推荐二轮电动车仪表盘蓝牙主芯片方案-HS6621CGC

随着国内二轮电动车的火热开启,电动车的智能化程度越来越高;电动车的智能操控需求也越来越高,现在介绍蓝牙控制面板的一些功能;例如:定位(GNSS),设防,实时上报数据&#…...

『香橙派』基于Orange Pi AIpro打造高效个人云存储解决方案

读完这篇文章里你能收获到 了解Orange Pi AIpro硬件优势,为构建高效云存储基础设施的理想平台。学会使用Orange Pi AIpro硬件平台,搭载Ubuntu Server系统,打造云存储环境。掌握利用Kodbox软件,享受文件管理、多格式预览及编辑的全…...

Sylvester矩阵、子结式、辗转相除法的三者关系(第二部分)

【三者的关系】 首先,辗转相除法可以通过Sylvester矩阵进行,过程如下(以 m 8 、 l 7 m 8、l 7 m8、l7为例子)。 首先调整矩阵中 a a a系数到最后面几行,如下所示: S ( a 8 a 7 a 6 a 5 a 4 a 3 a 2 …...

PyTorch的数据处理

💥今天看一下 PyTorch数据通常的处理方法~ 一般我们会将dataset用来封装自己的数据集,dataloader用于读取数据 Dataset格式说明 💬dataset定义了这个数据集的总长度,以及会返回哪些参数,模板: from tor…...

第14章-蓝牙遥控小车 手把手做蓝牙APP遥控小车 蓝牙串口通讯讲解

本文讲解手机蓝牙如何遥控小车,如何编写串口通信指令 第14章-手机遥控功能 我们要实现蓝牙遥控功能,蓝牙遥控功能要使用:1.单片机的串口、2.蓝牙通信模块 所以我们先调试好:单片机的串口->蓝牙模块->接到一起联调 14.1-电脑控制小车 完成功能…...

【补充1】字节对齐

文章目录 1.字节对齐的基本概念2.字节对齐规则3.实践出真知(加大难度)4 位域 1.字节对齐的基本概念 (1)现代计算机中内存空间都是按照byte划分的, 从理论上讲似乎对任何类型的变量的访问可以从任何地址开始&#xff0…...

Java数据库连接(JDBC)

一、引言 在Java应用程序中,经常需要与数据库进行交互以存储、检索和处理数据。Java数据库连接(JDBC)是Java平台中用于执行这一任务的标准API。JDBC允许Java程序连接到关系数据库,并使用SQL语句来执行查询和更新操作。本教程将详…...

记录一次cas单点登录的集成

主要思路:浏览器访问CAS服务器登录,拿到凭证给后端,后端用此凭证到CAS服务器验证登录并拿到用户信息,之后基于该凭证维持用户的登录状态。 主要流程: 1.浏览器访问后端需认证登录地址(不带ticket&#xf…...

【吊打面试官系列】Java高并发篇 - 什么是乐观锁和悲观锁?

大家好,我是锋哥。今天分享关于 【什么是乐观锁和悲观锁?】面试题,希望对大家有帮助; 什么是乐观锁和悲观锁? 1、乐观锁: 就像它的名字一样,对于并发间操作产生的线程安全问题持乐观状态, 乐观锁认为竞争…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

2023赣州旅游投资集团

单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践,很多人以为AI已经强大到不需要程序员了,其实不是,AI更加需要程序员,普通人…...