Python应用开发——30天学习Streamlit Python包进行APP的构建(2)
🗓️ 天 14
Streamlit 组件s
Streamlit 组件s 是第三方的 Python 模块,对 Streamlit 进行拓展 [1].
有哪些可用的 Streamlit 组件s?
好几十个精选 Streamlit 组件s 罗列在 Streamlit 的网站上 [2].
Fanilo(一位 Streamlit 创作者)在 wiki 帖子中组织了一个很棒的 Streamlit 组件s 列表 [3]。截至 2022 年 4 月,其列出了约 85 个 Streamlit 组件s 。
如何使用?
Streamlit 组件s 只需要通过 pip 安装即可使用。
在这篇教程中,我们将教会你如何使用 streamlit_pandas_profiling
组件 [4].
安装组件
pip install streamlit_pandas_profiling
示例应用
代码
以下是如何使用这个组件来构建 Streamlit 应用:
import streamlit as st
import pandas as pd
import pandas_profiling
from streamlit_pandas_profiling import st_profile_report#标题设定
st.header('`streamlit_pandas_profiling`')#导入数据文件
df = pd.read_csv('https://raw.githubusercontent.com/dataprofessor/data/master/penguins_cleaned.csv')pr = df.profile_report()
st_profile_report(pr)
逐行解释
创建 Streamlit 应用时要做的第一件事就是将 streamlit
库导入为 st
,以及导入其他要用到的库:
import streamlit as st
import pandas as pd
import pandas_profiling
from streamlit_pandas_profiling import st_profile_report
然后紧跟着的是应用的标题文字:
st.header('`streamlit_pandas_profiling`')
接下来我们使用 pandas
中的 read_csv
命令载入 Penguins 数据集。
df = pd.read_csv('https://raw.githubusercontent.com/dataprofessor/data/master/penguins_cleaned.csv')
最后,由 profile_report()
命令生成分析报告,并用 st_profile_report
显示出来:
pr = df.profile_report()
st_profile_report(pr)
制作你自己的组件
如果你对于制作自己的组件感兴趣,请查阅以下这些资源:
- 制作组件
- 发布组件
- 组件 API
- 有关组件的博客帖子
如果你更愿意通过视频学习,我们的工程师 Tim Conkling 也做了一些超棒的教程:
- 如何构建一个 Streamlit 组件s | Part 1: 配置与架构
- 如何构建一个 Streamlit 组件s | Part 2: 制作一个滑条组件
有关组件的延伸阅读
- Streamlit 组件s - API 文档
- 精选 Streamlit 组件s
- Streamlit 组件s - 社区追踪
- streamlit_pandas_profiling
🗓️ 天 15
st.latex
st.latex
以 LaTeX 语法显示数学公式。
我们要做什么?
相关文章:
Python应用开发——30天学习Streamlit Python包进行APP的构建(2)
🗓️ 天 14 Streamlit 组件s Streamlit 组件s 是第三方的 Python 模块,对 Streamlit 进行拓展 [1]. 有哪些可用的 Streamlit 组件s? 好几十个精选 Streamlit 组件s 罗列在 Streamlit 的网站上 [2]. Fanilo(一位 Streamlit 创作者)在 wiki 帖子中组织了一个很棒的 St…...

Leecode热题100---46:全排列(递归)
题目: 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 思路: 元素交换函数递归: 通过交换元素来实现全排列。即对于[x, nums.size()]中的元素,for循环遍历每个元素分别成…...
Android 多语言
0. Locale方法 Locale locale Locale.forLanguageTag("zh-Hans-CN"); 执行如下方法返回字符串如下: 方法 英文下执行 中文下执行 备注 getLanguage()zhzhgetCountry()CNCNgetDisplayLanguage()zh中文getDisplayCountry()CN中国getDisplayName()zh (…...

Thingsboard规则链:Message Type Filter节点详解
一、Message Type Filter节点概述 二、具体作用 三、使用教程 四、源码浅析 五、应用场景与案例 智能家居自动化 工业设备监控 智慧城市基础设施管理 六、结语 在物联网(IoT)领域,数据处理与自动化流程的实现是构建智能系统的关键。作…...

SQLI-labs-第二十五关和第二十五a关
目录 第二十五关 1、判断注入点 2、判断数据库 3、判断表名 4、判断字段名 5、获取数据库的数据 第二十五a关 1、判断注入点 2、判断数据库 第二十五关 知识点:绕过and、or过滤 思路: 通过分析源码和页面,我们可以知道对and和or 进…...
Windows、Linux添加路由
目录 一、Windows添加路由 1. 查看路由规则 2. 添加路由规则 3. 添加默认路由 4. 删除路由规则 二、Linux添加路由 1. 查看路由 2. 添加路由 3. 删除路由 4. 修改路由 5. 临时路由 6. 默认网关设置 一、Windows添加路由 1. 查看路由规则 route print 2. 添加…...

Swift 初学者交心:在 Array 和 Set 之间我们该如何抉择?
概述 初学 Swift 且头发茂密的小码农们在日常开发中必定会在数组(Array)和集合(Set)两种类型之间的选择中“摇摆不定”,这也是人之常情。 Array 和 Set 在某些方面“亲如兄弟”,但实际上它们之间却有着“云…...
C++ 类模板 函数模板
类模板 #include <bits/stdc.h> using namespace std; //多少变量就写多少个 template<typename T1, typename T2> class Cat { public:Cat(){}Cat(T1 name, T2 age){this->age age;this->name name;}void print(){cout << this->name << …...

OTP8脚-全自动擦鞋机WTN6020-低成本语音方案
一,产品开发背景 首先,随着人们生活质量的提升,对鞋子的保养需求也日益增加。鞋子作为人们日常穿着的重要组成部分,其清洁度和外观状态直接影响到个人形象和舒适度。因此,一种能够自动清洁和擦亮鞋子的设备应运而生&am…...

GpuMall智算云:meta-llama/llama3/Llama3-8B-Instruct-WebUI
LLaMA 模型的第三代,是 LLaMA 2 的一个更大和更强的版本。LLaMA 3 拥有 35 亿个参数,训练在更大的文本数据集上GpuMall智算云 | 省钱、好用、弹性。租GPU就上GpuMall,面向AI开发者的GPU云平台 Llama 3 的推出标志着 Meta 基于 Llama 2 架构推出了四个新…...

内存泄漏案例分享4-异步任务流内存泄漏
案例4——异步任务内存泄漏 异步任务,代指起子线程异步完成一些数据操作、网络接口请求等,通常会使用以下API: Runnbale,Thread,线程池RxJavaHandlerThread 而这些异步任务很有可能操作内存泄漏,下面我们以Rxjava为…...
【机器学习300问】100、怎么理解卷积神经网络CNN中的池化操作?
一、什么是池化? 卷积神经网络(CNN)中的池化(Pooling)操作是一种下采样技术,其目的是减少数据的空间维度(宽度和高度),同时保持最重要的特征并降低计算复杂度。池化操作不…...

RPA机器人流程自动化如何优化人力资源工作流程
人力资源部门在支持员工和改善整体工作环节方面扮演着至关重要的角色,但是在人资管理的日常工作中,充斥着大量基于规则的重复性任务,例如简历筛选、面试安排、员工数据管理、培训管理、绩效管理等,这些任务通常需要工作人员花费大…...

OpenHarmony开发者大会2024:鸿心聚力 智引未来
2024年5月25日,OpenAtom OpenHarmony(简称“OpenHarmony")委员会以“鸿心聚力,智引未来”为主题,在创新之城深圳举办OpenHarmony开发者大会2024,为开发者、产业组织、生态伙伴和行业客户搭建一个交流、分享和学习…...

新楚文化知网收录文学艺术类期刊投稿
《新楚文化》是由国家新闻出版总署批准,湖北省文学艺术界联合会主管,湖北今古传奇传媒集团有限公司主办的正规期刊。主要刊登文化、文学、艺术类稿件;包括传统文化、非遗、历史文化、地方文化、中外友好文化交流、文学作品研究、艺术研究等方…...

基于vue3速学angular
因为工作原因,需要接手新的项目,新的项目是angular框架的,自学下和vue3的区别,写篇博客记录下: 参考:https://zhuanlan.zhihu.com/p/546843290?utm_id0 1.结构上: vue3:一个vue文件ÿ…...
链游中的代币(Token)或加密货币(Cryptocurrency)是如何产生和使用的?
在区块链游戏(链游)中,代币和加密货币不仅是游戏经济的核心,也是连接现实世界与虚拟游戏世界的桥梁。这些数字货币不仅赋予了游戏内资产的真实价值,还为玩家提供了全新的互动和交易方式。下面,我们将深入探…...

2024年5月23日 (周四) 叶子游戏新闻
《Unclogged》Steam页面上线 马桶主题恐怖逃脱解谜Brody制作并发行,一款奇葩创意马桶主题恐怖逃脱解谜新游《Unclogged》Steam页面上线,本作暂不支持中文。 Meta人工智能主管杨立昆 大语言模型不会达到人类智能水平IT之家今日(5月23日&#x…...

猫毛过敏终结者!宠物空气净化器让你告别红眼和喷嚏
猫毛过敏是一种常见的过敏性疾病,影响着全球数百万人的日常生活。这种过敏反应通常是由于对猫皮屑、唾液或尿液中的蛋白质产生免疫反应而引起的。症状可能包括打喷嚏、流鼻涕、眼睛痒、皮肤疹和呼吸困难,严重影响患者的舒适度和生活质量。对于猫毛过敏者…...

xgboost项目实战-保险赔偿额预测与信用卡评分预测001
目录 算法代码 原理 算法流程 xgb.train中的参数介绍 params min_child_weight gamma 技巧 算法代码 代码获取方式:链接:https://pan.baidu.com/s/1QV7nMC5ds5wSh-M9kuiwew?pwdx48l 提取码:x48l 特征直方图统计: fig, …...

华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...