当前位置: 首页 > news >正文

论文阅读》学习了解自己:一个粗略到精细的个性化对话生成的人物感知训练框架 AAAI 2023

《论文阅读》学习了解自己:一个粗略到精细的个性化对话生成的人物感知训练框架 AAAI 2023

前言

亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~
无抄袭,无复制,纯手工敲击键盘~

今天为大家带来的是《Learning to Know Myself: A Coarse-to-Fine Persona-Aware Training Framework for Personalized Dialogue Generation》

在这里插入图片描述


出版:AAAI

时间:2023

类型:个性化对话生成

特点:粗粒度;细粒度;个性化;多样性;回复生成

作者:Yunpeng Li

第一作者机构:Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

简介

目前存在的问题是对话中个性化信息的稀疏性,仅利用MLE(Maximum Likelihood Estimation)会导致模型生成的回复与给定的个性化信息不相关或不一致,为了解决这一问题,本文提出两阶段个性化感知的训练框架来提升个性一致性

粗粒度阶段:构建个性化问答对,通过训练模型回答个性化感知的问题,使得模型对于个性化信息高度敏感

细粒度阶段:通过对比学习显式挖掘一致性回复和生成不一致性回复之间的差别,迫使模型更加关注关键的个性化信息

研究现状

目前对于融入个性化信息的方法有:

1)使用隐变量

2)大预训练语言模型

但是这些方法是通过 MLE 损失计算的,这样通常容易生成最高频词,导致生成个性化不一致或不相关的回复

从上图,作者总结到,目前融入个性化信息主要存在的问题:

一方面,回复中包含的个性化信息太少,导致模型认为这些信息是噪声

另一方面,模型对于个性化信息中关键信息缺乏关注,导致生成个性化话相关但不一致的回复,如上述 response 2

此外,作者认为最主要是因为模型无法始终保持一致性,而这和自我意识有关

a self-conscious human should have the capacity to avoid misidentifcation, which means he can not only pick himself out but also avoid taking another person to be him.

中心思想是从粗略地了解自我学习到精细地避免误识别,提高回复的一致性

任务定义

模型架构

Learning to know myself

这部分算是自问自答吧,首先需要构造一个具有个性感知问答对

通过 DNLI 数据集提供的 P P P,构建三元组( e 1 , r , e r e_1, r, e_r e1,r,er),其中 r r r r 1 _ r 2 r_1\_r_2 r1_r2 的形式, r 1 r_1 r1 是动词, r 2 r_2 r2 是名词

这样的话就可以根据三元组构建问题,模板为 “What r 2 r_2 r2 do e 1 e_1 e1 r 1 r_1 r1 ?"

三元组:[I, like sports,basketball]
问题:What sports do you like?

在生成时,由于没有个性化信息,所以需要通过用 Roberta_large 在 DNLI 数据集上微调通过输入个性化信息,得到关系,然后对于实体信息,则需要抓取输入的关键词

上述为实验的先决条件,在获取数据集之后,我们得到了 query-response(个性化信息) 对,通过输入 query 生成 response 来训练模型的自我意识

Learning to avoid Misidentification

对比学习最关键的部分就在于构造负样本对,我们直接来学习一下这个部分

为了找到回复中最关键的个性化信息,比较个性化信息与 gold response 和去掉每一个词在回复中的蕴含得分,差值为该词的个性化得分
C k ( y i ) = p ( E ∣ [ P j ; Y ] ; ϕ ) − p ( E ∣ [ P j ; Y / i ] ; ϕ ) C_k(y_i) = p(E|[P_j ; Y ]; ϕ) − p(E|[P_j ; Y_{/i}]; ϕ) Ck(yi)=p(E[Pj;Y];ϕ)p(E[Pj;Y/i];ϕ)
然后找到前 K 个最高的个性化得分,用 [ M A S K ] [MASK] [MASK] 遮盖,送入 MLM 模型(不需要微调)中生成 [ M A S K ] [MASK] [MASK] 被掩盖的词,如果生成的词就是原来的词,则使用第二可能的词,这样就构造了 K 个不同的负样本 { Y i − } i = 1 K \{Y^-_i\}_{i=1}^K {Yi}i=1K

损失函数

实验结果

消融实验

在这里插入图片描述

相关文章:

论文阅读》学习了解自己:一个粗略到精细的个性化对话生成的人物感知训练框架 AAAI 2023

《论文阅读》学习了解自己:一个粗略到精细的个性化对话生成的人物感知训练框架 AAAI 2023 前言 简介研究现状任务定义模型架构Learning to know myselfLearning to avoid Misidentification损失函数实验结果消融实验 前言 亲身阅读感受分享,细节画图解释…...

[Java EE] 网络编程与通信原理(三):网络编程Socket套接字(TCP协议)

🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏:🍕 Collection与数据结构 (92平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 🧀Java …...

MyBatis懒加载数据(大批量数据处理)

使用范例 Cursor约定使用Iterator去懒加载数据,以时间换空间,非常适合处理通常无法容纳在内存中的数百万个项目查询。如果在 resultMap 中使用集合,则必须使用 resultMap 的 id 列对游标 SQL 查询进行排序(resultOrdered“true”)。 //为了避…...

MySQL--联合索引应用细节应用规范

目录 一、索引覆盖 1.完全覆盖 2.部分覆盖 3.不覆盖索引-where条件不包含联合索引的最左则不覆盖 二、MySQL8.0在索引中的新特性 1.不可见索引 2.倒序索引 三、索引自优化--索引的索引 四、Change Buffer 五、优化器算法 1.查询优化器算法 2.设置算法 3.索引下推 …...

【spring boot+Lazy ORM+mysql】开发一个数据库管理系统实现对应数据库数据查看和修改

【spring bootLazy ORMmysql】开发一个数据库管理系统实现对应数据库数据查看和修改 演示项目地址:http://124.222.48.62:30193/wu-smart-acw-ui/index.html#/login (admin/admin) 功能 用户登录注册新增、编辑数实例新增、编辑数据库信息…...

知识分享:隔多久查询一次网贷大数据信用报告比较好?

随着互联网金融的快速发展,越来越多的人开始接触和使用网络贷款。而在这个过程中,网贷大数据信用报告成为了评估借款人信用状况的重要依据。那么,隔多久查询一次网贷大数据信用报告比较好呢?接下来随小易大数据平台小编去看看吧。 首先&…...

【Day8:JAVA字符串的学习】

目录 1、常用API2、String类2.1 String类的特点2.2 String类的常见构造方法2.3 String类的常见面试题:2.3.1 面试题一:2.3.2 面试题二:2.3.3 面试题三:2.3.4 面试题四: 2.4 String类字符串用于比较的方法2.5 String类字…...

jetcache缓存

1 介绍 是阿里的双极缓存,jvm-->redis-->数据库 文档:jetcache/docs/CN at master alibaba/jetcache GitHub 2 注意事项 使用的实体类一定实现序列化接口定时刷新注解,慎用 它会为每一个key创建一个定时器 :场景为&…...

SQLSyntaxErrorException: FUNCTION dbname.to_timestamp does not exist

由于MySQL数据库高版本(如8.x)中有to_timestamp()函数,低版本中(如5.7.x)没有这个函数,服务运行报错。 自己创建函数实现功能,创建语句如下; DELIMITER // CREATE FUN…...

Borel-Cantelli 引理

翻译自大佬 https://huarui1998.com/Notes/math/borel-cantelli.html 1. 集序列的 lim ⁡ inf ⁡ \lim\inf liminf 和 lim ⁡ sup ⁡ \lim\sup limsup 类似于定义实数序列 { a k } \{a_k\} {ak​} 的 lim ⁡ inf ⁡ \lim\inf liminf 和 lim ⁡ sup ⁡ \lim\sup limsup, …...

算法训练营第四十一天 | LeetCode 509 斐波那契数列、LeetCode 70 爬楼梯、LeetCode 746 使用最小花费爬楼梯

LeetCode 509 斐波那契数列 这题动规五部曲都定义得比较明确。首先是dp数组下标,题目中给定F(0) 0说明从0开始,dp[i]直接表示F(i)的值即可。递推公式也直接给出了,也给了开头两个作为递推基础的数值作为初始化依据。遍历顺序也指明是从前往…...

网络其他重要协议(DNS、ICMP、NAT)

1.DNS DNS是一整套从域名映射到IP的系统 1.1 DNS背景 TCP/IP中使用IP地址和端口号来确定网络上的一台主机的一个程序,但是IP地址不方便记忆,例如我们想访问百度就会在浏览器中输入baidu.com而不是百度的IP地址。于是人们发明了一种叫主机名的东西, 是…...

利用PyCSP3库(含大量全局约束)进行组合约束建模

文章目录 1. 什么是 PyCSP3 ?2. 安装方法(Windows)2.1 通过 Google_colab 直接运行2.2 通过 pip 进行安装3. 快速入门3.1 声明变量3.2 更新约束3.3 定义目标3.4 常用的全局约束1. 什么是 PyCSP3 ? PyCSP3 是 Python 中的一个库,用于对组合约束问题进行建模,包括 约束满足…...

解决updateByExample时属性值异常的问题(部分属性值没有使用占位符?进行占位,而是变成了属性的名称)

目录 场景简介代码片断实体类 报错信息排查原因解决测试过程解决方案 场景简介 1、程序将mybatis框架升级为3.5.9版本后执行updateByExample方法时报错 代码片断 Condition condition new Condition(MbCcsSessionConfig.class); condition.createCriteria().andEqualTo(&quo…...

[C++][algorithm][Eigen] 基于Eigen实现Softmax函数

1 简介 Softmax函数是机器学习和深度学习中一个非常重要的激活函数,它在多分类问题中尤其关键。Softmax函数能够将一个向量或一组实数转换成概率分布,使得每个元素的值都在0到1之间,并且所有元素的和为1。本博客文章《【Eigen】基于Eigen实现…...

一招教大家,如何移除受保护的excel工作表的编辑权限限制?

有时候,我们打开工作表发现只有部分单元格可以编辑,点击其他单元格都显示“您试图更改的单元格或图标受保护”,既没法正常编辑或下拉填充,也没有办法快捷筛选。这时候我们可以通过输入密码解除保护,就可以正常编辑了。…...

Python 全栈体系【四阶】(五十三)

第五章 深度学习 十二、光学字符识别(OCR) 2. 文字检测技术 2.3 DB(2020) DB全称是Differentiable Binarization(可微分二值化),是近年提出的利用图像分割方法进行文字检测的模型。前文所提…...

民国漫画杂志《时代漫画》第27期.PDF

时代漫画27.PDF: https://url03.ctfile.com/f/1779803-1248635258-b6a842?p9586 (访问密码: 9586) 《时代漫画》的杂志在1934年诞生了,截止1937年6月战争来临被迫停刊共发行了39期。 ps: 资源来源网络!...

图论(四)—最短路问题(Dijkstra)

一、最短路 概念:从某个点 A 到另一个点B的最短距离(或路径)。从点 A 到 B 可能有多条路线,多种距离,求其中最短的距离和相应路径。 最短路径分类: 单源最短路:图中的一个点到其余各点的最短路径…...

用友NC linkVoucher SQL注入漏洞复现

0x01 产品简介 用友NC是由用友公司开发的一套面向大型企业和集团型企业的管理软件产品系列。这一系列产品基于全球最新的互联网技术、云计算技术和移动应用技术,旨在帮助企业创新管理模式、引领商业变革。 0x02 漏洞概述 用友NC /portal/pt/yercommon/linkVoucher 接口存在…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...