有限元法之有限元空间的构造
目录
一、区域Ω的剖分
二、三角形一次元
三、一次元的基函数与面积坐标
四、三角形二次元及其基函数
前两节我们介绍了有限元基本概念和变分理论的推导,本节我们继续探讨有限元空间的构造。
一、区域Ω的剖分
对矩形区域进行三角剖分,其中x方向剖分m份,y方向剖分n份,共得到
个节点及
个三角形单元。图1是
的剖分情况,节点编号用数字表示,单元用带圈的数字表示。为了实现后面的程序编写,必须明确单元上的局部编号与整体编号,如图2所示。通过设置剖分数,可以建立单元上整体编号与局部编号之间的关系,可设置二维数组
,第一个参数为单元编号,第二个参数为局部节点编号,如
等,表示第3个单元第0号局部节点的整体节点编号为8,而
则表示第2个单元第1号局部节点的整体节点编号为2。可以通过循环设置所有的节点。


二、三角形一次元
前面两节提到,可以选取为分片连续的一次多项式函数空间,也就是在每个单元e上,
中的函数都是一次多项式,且要保证整体连续。因此对于相邻的两个三角形单元,它们有一条公共边,只要保证分片一次多项式在这条公共边的两个端点(也是剖分节点)处函数值相同即可保证函数整体连续。这样,分片一次多项式在每个单元上的表达式就可以由它在3个顶点处的值唯一确定。下面,在节点
(对应整体编号为i,j,k)的单元e上考虑数值解
的表达式,尝试用基函数来表示
,其中
为待定基函数,满足以下性质:
且它们都是一次函数。这样,数值解在单元e上的表达式完全由它在3个顶点处
处的值
决定,
可以看作精确解u在整体编号i,j,k的节点处的近似。一旦把所有
求出来(边界点除外,因为
从而边界节点处
的值为零),则数值解
的表达式也就确定了。所以现在的基本问题是对离散问题式
求,使得
建立的关系式。
三、一次元的基函数与面积坐标
由于基函数在单元e上是一次多项式,尝试设,其中a,b,c为待定系数,且单元e上s号节点
的坐标为
,则由条件公式(1)可知:
从而解出
代入可得
可以证明以(逆时针排列)为顶点的三角形单元e的面积
。
于是,若内有一点P的坐标为
,如图3所示,则

同理,
注意到,显然有
也就是说不是相互独立的。换言之,
内任一点
,必然可以唯一对应一组坐标
,基函数
被称为重心坐标。由于它们又都是三角形的面积比,所以它们也称为面积坐标。面积坐标在有限元分析中非常重要,它是从一般单元变化到标准单元的工具,也是进行Sobolev空间范数估计的有效手段。事实上,公式(4)、(5)可以反解出直角坐标
与重心坐标之间的对应关系式:
从而可以实现将一般的三角形单元变换成标准单元
,如图4所示。

四、三角形二次元及其基函数
我们除了可以选取为分片连续的一次多项式函数空间外,也可以选取
为分片连续的二次多项式函数空间,也就是在每个单元e上,
中的函数都是二次多项式,且要保证整体连续。因此在每个单元e上,
中的分片二次多项式函数
就形如
,其中
均为待定常数,从而需要有6个条件来唯一确定这个表达式。与一次元相似,要确定这6个常数,我们可以取三角形单元e的3个顶点及3条边的中点值作为条件(这些条件称为自由度),即分片二次多项式在每个单元上的表达式就可以由它在这个单元3个顶点和3条边的中点处的值唯一确定,这样也可以保证函数的整体连续性。事实上,在相邻的两个三角形单元上的公共边上,位置变量x和y有一个直线方程的线性约束,从而
在这条边上成为一个只关于自变量x的二次函数,这个函数在3个不同的点(两个顶点和一个中点)上取值相同,说明
在公共边上的表达式所示唯一确定的,也就是说,这个分片二次多项式在相邻两个单元上虽然整体表达式不相同,但在其公共边上表达式相同,这就保证了函数在
上整体连续,从而实现
。
对于以上的三角形二次元,由于涉及到三角形单元的中点,所以尽管三角形剖分情况不变,即共有2mn个三角形单元,但整体节点数变为个,且节点的编号将随之发生改变。例如,图1将变为图5。

接下来,在单元e上考虑数值解的表达式,其中e的3个顶点为
(对应整体编号为i,j,k),3条边的中点为
(对应整体编号为
),如图6。

在单元e上的表达式尝试用基函数表示为
其中为待定基函数,满足以下性质:
利用重心坐标,很容易将上述基函数表示出来,即有分别对应于三角形单元3个顶点的基函数:
及对应于三角形3条边中点的 基函数:
至此,数值解 在单元e上的表达式就确定为:
综上,有限元空间由一个三元组
确定。具体的,设
是区域Ω的一个剖分,e是剖分
中的单元,参数h定义为所有单元的最大直径,即
,
是选定的分片多项式函数空间,
是每个e上用于唯一确定
内的多项式函数所需要的条件。
相关文章:
有限元法之有限元空间的构造
目录 一、区域Ω的剖分 二、三角形一次元 三、一次元的基函数与面积坐标 四、三角形二次元及其基函数 前两节我们介绍了有限元基本概念和变分理论的推导,本节我们继续探讨有限元空间的构造。 一、区域Ω的剖分 对矩形区域进行三角剖分,其中x方向剖…...
高通车规芯片分析
高通三款芯片 SA8155P 7nm SA8295P 5nm SA8255P 5nm 分析AECQ等级 AECQ100里面定义了5个工作环境温度等级:Grade0:-40-150 Grade1:-40-125 Grade2:-40-105 Grade3:-40-85 Grade4:0-70AEC-Q100整体认证测试…...
Flutter 中的 TextButton 小部件:全面指南
Flutter 中的 TextButton 小部件:全面指南 在Flutter的世界里,TextButton是一个基础的小部件,用于创建只包含文本的按钮。它通常用于对话框、表单以及需要强调主要操作的界面。本文将为您提供一个全面的指南,帮助您了解如何使用T…...

通过键值对访问字典
自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 在Python中,如果想将字典的内容输出也比较简单,可以直接使用print()函数。例如,要想打印dictionary字典ÿ…...

海外仓扫码管理系统怎么选?精准,高效管理需求才是核心需求
海外仓对那些想拓展国际市场的商家来说还是非常重要的,大部分的货物都需要先运到海外仓,才能继续进行下一步的物流快递发货。 那对于海外仓本身来说,当面临大量订单的时候,怎么快速的管理订单,拣选货物就变得十分重要…...

基于51单片机的智能灯光控制系统
一.硬件方案 智能灯光控制系统由单片机最小系统、人体感应模块、关照强度模块、灯光控制模块、电源模块和灯泡组成。本文以STC89C52单片机为核心,通过利用光照度和红外人体感应相结合主动与被动的探测方法,现了室内无人或者关照充足时灯光自动光灯&…...
测试开发面试题
简述自动化测试的三大等待 强制等待。直接使用time.sleep()方法让程序暂停指定的时间。优点是实现简单,缺点是不够灵活,可能会导致不必要的等待时间浪费。隐式等待。设置一个固定的等待时间,在这个时间内不断尝试去查找元素,如果…...

多线程JUC 第2季 BlockingQueue 阻塞队列
一 阻塞队列 1.1 阻塞队列介绍 阻塞队列(BlockingQueue)是一个在队列基础上又支持了两个附加操作的队列: put方法:当队列装满时,添加的线程则被阻塞,直到队列不满,则可用。 take方法&#x…...
【MySQL精通之路】全文搜索(3)-带查询扩展的全文搜索
博主PS:你可以把他理解为,查询猜测,膨胀查询,查询的第六感。 全文搜索支持查询扩展(尤其是其变体“盲查询扩展”)。 当搜索短语太短时,这通常很有用,这通常意味着用户依赖于全文搜索…...

【面试必看】Java并发
并发 1. 线程 1. 线程vs进程 进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。 系统运行一个程序即是一个进程从创建,运行到消亡的过程。在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进…...

C++的第一道门坎:类与对象(一)
1.面向过程与面向对象 1.1面向过程 我们之前学习的C语言就是一种面向过程的语言,面向过程的语言强调的是具体实现的过程,一般用函数来具体实现。我们用面向过程的思想,就可以把炒菜分为以下几个步骤: 1.2面向对象 而对于面向对象的语言而言…...
经典面试题:MySQL如何调优?
目录 前言1. SQL查询优化2. 索引优化3. 表结构设计4. 硬件与配置优化5. 日常维护6. 性能测试与基准测试 前言 MySQL如何进行调优?这是面试中容易被问到的高频问题。 1. SQL查询优化 避免使用select* :只选取需要的列,减少数据传输量。使用…...

【程序员如何送外卖】
嘿,咱程序员要在美团送外卖,那还真有一番说道呢。 先说说优势哈,咱程序员那逻辑思维可不是盖的,规划送餐路线什么的,简直小菜一碟。就像敲代码找最优解一样,能迅速算出怎么送最省时间最有效率。而且咱平时…...
【git pull 和 push详解】
git pull 和 push详解 1.背景2.命令和解释2.1 git pull简介详情 2.2 git push简介Git Push 参数及详细解释 1.背景 在分布式开发环境中,git pull和git push的使用确保了团队成员之间的代码一致性,减少了不同步导致的问题。它们简化了版本管理,…...

数据挖掘导致直接路径读(direct path read)耗尽了IO
一大早就有喊业务卡的,检查等待事件源头,均为oracle写等待 查看IO负载持续维持在100%繁忙 后台有两个并行rman备份在,停止备份io繁忙没有好转,检查最近ash报告,发现DDTEK ODBC Oracle程序模块占用最高 检查该模块&…...

用队列实现栈 用栈实现队列 设计循环队列
用队列实现栈 思路 栈的特点:后进先出 队列的特点:先进先出 使用两个队列实现栈: 我们可以使用两个队列,一个队列为:空队列,一个队列为:非空队列 当我们要出队列时: 将 size - …...

BFS解决最短路问题(详解)
目录 BFS简介 && 框架: 一.二叉树的最小深度 二:迷宫中里入口最近的出口: 三.最小基因变化: 四:单词接龙: 五:为高尔夫比赛砍树: BFS简介 && 框架: 说到BFS…...

按尺寸筛选轮廓图中的轮廓
1.按短边筛选 原始轮廓图: import cv2 import numpy as np# 读取轮廓图 contour_image cv2.imread(..\\IMGS\\pp_edge.png, cv2.IMREAD_GRAYSCALE)# 使用cv2.findContours()函数获取所有轮廓 contours, _ cv2.findContours(contour_image, cv2.RETR_EXTERNAL, cv2…...

VBA高级应用30例:实现在列表框内及列表框间实现数据拖动
《VBA高级应用30例》(版权10178985),是我推出的第十套教程,教程是专门针对高级学员在学习VBA过程中提高路途上的案例展开,这套教程案例与理论结合,紧贴“实战”,并做“战术总结”,以…...
「AIGC算法」R-tree算法
R-tree算法是一种非常实用的空间数据索引技术,它可以帮助我们在复杂的空间数据中快速找到我们想要的信息。下面我将用一些生活中的例子来帮助大家更好地理解R-tree算法。 1. 定义与原理 想象一下,你有一个巨大的图书馆,里面有成千上万本书,每本书都有它在书架上的特定位置…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...