yolov8+ROS+ubuntu18.04——学习记录
参考文献
1.Ubuntu配置Yolov8环境并训练自己的数据集 + ROS实时运行
2.https://juejin.cn/post/7313979467965874214
前提:
1.CUDA和Anaconda,PyTorch
2.python>=3.8
一、创建激活环境,安装依赖
1.创建虚拟环境
conda create -n yolov8 python=3.8
2.激活虚拟环境
conda activate yolov8
3.安装yolov8
pip install ultralytics
清华源安装
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple/
安装rospkg
pip install rospkg
二、安装数据标注软件并使用
1.激活刚刚建的虚拟环境
conda activate yolov8
2.安装数据标注软件
pip install labelImg
清华源安装
pip install labelImg -i https://pypi.tuna.tsinghua.edu.cn/simple/
3.启动标注软件
labelImg
4.标注软件的使用
(1).打开目录:选择你拍摄图片存放的文件夹,我的是yolo2/data/images
(2).改变存放目录:选择你要将标注存放的文件夹,yolo2/data/Annotations
(3).选中查看-自动保存:这样无需自己保存
(4).点击创建区块:对要识别的物体进行标注,标注框紧贴物体,请勿框大或框小,有几个框几个,勿遗漏,不要两个框一起
(5).标签模式pascalVOC可以先不改成yolo模式,因为它保存的信息比较多,如果确定只用yolo也可以选择yolo模式
三、数据集的制作
在不同背景下拍摄要识别物体的照片,放在yolo2/data/images中。data下的文件夹包括:
(1).Annotations:数据集标注的文件(.xml)
(2).images:数据集图片 (.jpg)
(3).ImageSets:数据集划分(.txt)
(4).labels:数据集标注,yolo格式版(.txt)
数据集标注完成后,images、Annotations有了内容
1.数据集划分
yolo2文件夹下,创建一个文件splitDataset.py,内容如下:
import random
import ostrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
运行,ImageSets中会出现
2.将xml文件转换成yolo格式的txt文件
同样位置创建一个文件XML2TXT.py,内容如下
# xml解析包
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import joinsets = ['train', 'test', 'val']
classes = ['nut,bolt']# 进行归一化操作
def convert(size, box): # size:(原图w,原图h) , box:(xmin,xmax,ymin,ymax)dw = 1./size[0] # 1/wdh = 1./size[1] # 1/hx = (box[0] + box[1])/2.0 # 物体在图中的中心点x坐标y = (box[2] + box[3])/2.0 # 物体在图中的中心点y坐标w = box[1] - box[0] # 物体实际像素宽度h = box[3] - box[2] # 物体实际像素高度x = x*dw # 物体中心点x的坐标比(相当于 x/原图w)w = w*dw # 物体宽度的宽度比(相当于 w/原图w)y = y*dh # 物体中心点y的坐标比(相当于 y/原图h)h = h*dh # 物体宽度的宽度比(相当于 h/原图h)return (x, y, w, h) # 返回 相对于原图的物体中心点的x坐标比,y坐标比,宽度比,高度比,取值范围[0-1]# year ='2012', 对应图片的id(文件名)
def convert_annotation(image_id):'''将对应文件名的xml文件转化为label文件,xml文件包含了对应的bunding框以及图片长款大小等信息,通过对其解析,然后进行归一化最终读到label文件中去,也就是说一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去labal文件中的格式:calss x y w h 同时,一张图片对应的类别有多个,所以对应的bunding的信息也有多个'''# 对应的通过year 找到相应的文件夹,并且打开相应image_id的xml文件,其对应bund文件in_file = open('data/Annotations/%s.xml' % (image_id), encoding='utf-8')# 准备在对应的image_id 中写入对应的label,分别为# <object-class> <x> <y> <width> <height>out_file = open('data/labels/%s.txt' % (image_id), 'w', encoding='utf-8')# 解析xml文件tree = ET.parse(in_file)# 获得对应的键值对root = tree.getroot()# 获得图片的尺寸大小size = root.find('size')# 如果xml内的标记为空,增加判断条件if size != None:# 获得宽w = int(size.find('width').text)# 获得高h = int(size.find('height').text)# 遍历目标objfor obj in root.iter('object'):# 获得difficult ??difficult = obj.find('difficult').text# 获得类别 =string 类型cls = obj.find('name').text# 如果类别不是对应在我们预定好的class文件中,或difficult==1则跳过if cls not in classes or int(difficult) == 1:continue# 通过类别名称找到idcls_id = classes.index(cls)# 找到bndbox 对象xmlbox = obj.find('bndbox')# 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax']b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))print(image_id, cls, b)# 带入进行归一化操作# w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax']bb = convert((w, h), b)# bb 对应的是归一化后的(x,y,w,h)# 生成 calss x y w h 在label文件中out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')# 返回当前工作目录
wd = getcwd()
print(wd)for image_set in sets:'''对所有的文件数据集进行遍历做了两个工作:1.将所有图片文件都遍历一遍,并且将其所有的全路径都写在对应的txt文件中去,方便定位2.同时对所有的图片文件进行解析和转化,将其对应的bundingbox 以及类别的信息全部解析写到label 文件中去最后再通过直接读取文件,就能找到对应的label 信息'''# 先找labels文件夹如果不存在则创建if not os.path.exists('data/labels/'):os.makedirs('data/labels/')# 读取在ImageSets/Main 中的train、test..等文件的内容# 包含对应的文件名称image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()# 打开对应的2012_train.txt 文件对其进行写入准备list_file = open('data/%s.txt' % (image_set), 'w')# 将对应的文件_id以及全路径写进去并换行for image_id in image_ids:list_file.write('data/images/%s.jpg\n' % (image_id))# 调用 year = 年份 image_id = 对应的文件名_idconvert_annotation(image_id)# 关闭文件list_file.close()
这一步产生的yolo2下面的.txt文件有用,但是转xml文件没成功,不知道为什么,所以再在同样位置创建一个文件XML2TXT2.py,内容如下
# -*- coding: utf-8 -*-
#这个可以运行
import os
import xml.etree.ElementTree as ETdirpath = 'data/Annotations' # 原来存放xml文件的目录
newdir = 'data/labels' # 修改label后形成的txt目录if not os.path.exists(newdir):os.makedirs(newdir)dict_info = {'nut': 0, 'bolt': 1} # 有几个 属性 填写几个label namesfor fp in os.listdir(dirpath):if fp.endswith('.xml'):root = ET.parse(os.path.join(dirpath, fp)).getroot()xmin, ymin, xmax, ymax = 0, 0, 0, 0sz = root.find('size')width = float(sz[0].text)height = float(sz[1].text)filename = root.find('filename').textfor child in root.findall('object'): # 找到图片中的所有框sub = child.find('bndbox') # 找到框的标注值并进行读取label = child.find('name').textlabel_ = dict_info.get(label)if label_:label_ = label_else:label_ = 0xmin = float(sub[0].text)ymin = float(sub[1].text)xmax = float(sub[2].text)ymax = float(sub[3].text)try: # 转换成yolov3的标签格式,需要归一化到(0-1)的范围内x_center = (xmin + xmax) / (2 * width)x_center = '%.6f' % x_centery_center = (ymin + ymax) / (2 * height)y_center = '%.6f' % y_centerw = (xmax - xmin) / widthw = '%.6f' % wh = (ymax - ymin) / heighth = '%.6f' % hexcept ZeroDivisionError:print(filename, '的 width有问题')with open(os.path.join(newdir, fp.split('.xml')[0] + '.txt'), 'a+') as f:f.write(' '.join([str(label_), str(x_center), str(y_center), str(w), str(h) + '\n']))
print('ok')
运行之后,labels文件夹下会出现相关文件。
3.data下新建fall.yaml
内容
train: /home/dyj/yolo3/data/train.txt
val: /home/dyj/yolo3/data/val.txt
test: /home/dyj/yolo3/data/test.txt# number of classes
nc: 2# class names
names: ['nut','bolt']
nc:类别数量 names: ['nut','bolt']:类别名称 需要修改
四、运行
yolo task=detect mode=train model=yolov8n.pt data=data/fall.yaml batch=32 epochs=100 imgsz=640 workers=16 device=0
相关文章:

yolov8+ROS+ubuntu18.04——学习记录
参考文献 1.Ubuntu配置Yolov8环境并训练自己的数据集 ROS实时运行 2.https://juejin.cn/post/7313979467965874214 前提: 1.CUDA和Anaconda,PyTorch 2.python>3.8 一、创建激活环境,安装依赖 1.创建虚拟环境 conda create -n yol…...
Java小抄(一)|Java中的List与Set转换
文章目录 List和Set的区别线程安全的区别相互转换List->SetSet->List List和Set的区别 在Java中,List和Set都是集合接口,它们之间有几个关键的区别: 重复元素: List允许重复元素,可以存储相同的元素多次。Set…...
【每日随笔】小人畏威不怀德 , 君子畏德不畏威 ( 先礼后兵 )
文章目录 一、小人畏威不怀德1、小人畏威不怀德2、小人场景一3、小人场景二 二、君子畏德不畏威三、先礼后兵 一、小人畏威不怀德 1、小人畏威不怀德 如果 友善 的对待 小人 , 这种人 认知低 且 素质差 , 小人 会将你的 " 友善 " 理解为 " 屈服 " , 他会认…...
不一样的2024
当我们继续往前走时,发现身边的事物不再那么的陌生,也不再那边多的阻碍,不管怎么,2024将会不一样。 当我们走进审批流时,全面石荒芜的,所以自己构建了一个体系。 当我们转向开源时,发现开源与…...
linux mv操作和cp操作
mv 和 cp 是 Linux 系统中用于移动和复制文件或文件夹的两个常用命令,它们之间的主要区别在于: mv(move):mv 命令用于移动文件或文件夹,将它们从一个位置移动到另一个位置。移动后,原始文件或文…...

第十二届蓝桥杯物联网试题(国赛)
不得不说国赛相比较省赛而言确实,功能变得更加复杂,更加繁琐,特别是串口LORA通信相结合的更加频繁,且对收取的字符处理要求要更加复杂,处理判别起来会更加复杂。 对于收发数据本身来说,收发的数据本身是以…...

小而美的前端库推荐
小而美,指的是“小即是美”的事物,这是马云在 2009年 APEC 中小企业峰会上首次提出的观点 👍 前端有很多小而美的库,接入成本很低又能满足日常开发需求 🎉...

【LeetCode】力扣第 399 场周赛 优质数对的总数 II
文章目录 1. 优质数对的总数 II 1. 优质数对的总数 II 题目链接 🍎该题涉及的小技巧:🐥 🐧①一次可以统计这个数的 两个因子 但是要注意 25 5 * 5,这种情况 5 只能统计一次噢🆒 解题思路: 🐧…...

YOLOv8+PyQt5面部表情检测系统完整资源集合(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
1.资源包含可视化的面部表情检测系统,基于最新的YOLOv8训练的面部表情检测模型,和基于PyQt5制作的可视化面部表情检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的八类面部表情:…...
ROS 工作空间
ROS 工作空间 工作空间概念 ROS 的工作空间 在 ROS 中,工作空间(通常称为 Catkin 工作空间)是一个文件夹(目录)结构,它用于组织、构建和管理 ROS 项目中的软件包。主要特点包括: 1. 目录结构…...
【科普】ChatGPT-4o 是什么?和之前的ChatGPT4.0有什么区别,各有什么优劣势
文章目录 前言一、ChatGPT-4o 是什么?**主要特点和改进**: 二、ChatGPT-4o 和之前的ChatGPT4.0有什么区别,各有什么优劣势区别优势和劣势ChatGPT-4.0ChatGPT-4o 前言 5月13日,ChatGPT-4o发布,是人工智能的进一步发展&…...

django-celery-beat自动调度异步任务
Celery是一个简单、灵活且可靠的分布式系统,专门用于处理大量消息的实时任务调度。它支持使用任务队列的方式在分布的机器、进程、线程上执行任务调度。Celery不仅支持异步任务(如发送邮件、文件上传、图像处理等耗时操作),还支持…...

【CSharp】将ushort数组保存为1通道位深16bit的Tiff图片
【CSharp】将ushort数组保存为1通道位深16bit的Tiff图片 1.背景2.接口 1.背景 System.Drawing.Common 是一个用于图像处理和图形操作的库,它是 System.Drawing 命名空间的一部分。由于 .NET Core 和 .NET 5 的跨平台特性,许多以前内置于 .NET Framework…...

Bug:Linux用户拥有r权限但无法打开文件【Linux权限体系】
Bug:Linux用户拥有r权限但无法打开文件【Linux权限体系】 0 问题描述&解决 问题描述: 通过go编写了一个程序,产生的/var/log/xx日志文件发现普通用户无权限打开 - 查看文件权限发现该文件所有者、所有者组、其他用户均有r权限 - 查看该日…...

【Redis】Widows 和 Linux 下使用 Redis
Redis 简述 1.缓存 缓存就是将数据存放在距离计算最近的位置以加快处理速度。缓存是改善软件性能的第一手段,现代 CPU 越来越快的一个重要因素就是使用了更多的缓存,在复杂的软件设计中,缓存几乎无处不在。大型网站架构设计在很多方面都使用了缓存设计。 2.Redis Redis …...

统计计算四|蒙特卡罗方法(Monte Carlo Method)
系列文章目录 统计计算一|非线性方程的求解 统计计算二|EM算法(Expectation-Maximization Algorithm,期望最大化算法) 统计计算三|Cases for EM 文章目录 系列文章目录一、基本概念(一)估算 π \pi π(二&…...

大模型时代的具身智能系列专题(三)
清华高阳团队 高阳为清华叉院助理教授,本科毕业于清华大学计算机系,博士毕业于UC Berkeley。博士导师是Vision领域的大牛Trevor Darrell,读博期间和Sergey Levine合作开始强化学习方面的探索,博后跟随Pieter Abbeel做强化学习&am…...

使用 FileZilla 在 Windows 和 Ubuntu 之间传文件
网线一端插在板子的WAN口上,另一段插在电脑上,然后要配一下板子的IP。 板侧: 使用串口链接板子与PC端; 输入指令 ifconfig eth0(具体看wan口对应哪一个) 192.168.1.99 PC端配置: 打开网络设…...

【C++初阶】—— 类和对象 (上)
📝个人主页🌹:EterNity_TiMe_ ⏩收录专栏⏪:C “ 登神长阶 ” 🌹🌹期待您的关注 🌹🌹 类和对象 1. 初步认识C2. 类的引入3. 类的定义声明和定义全部放在类体中声明和定义分开存放 4.…...

基础—SQL—图形化界面工具的DataGrip使用(2)
一、回顾与引言 (1) 上次内容,博客讲到了DDL语句的数据库操作、表操作、表字段的操作的相关语法,然而之前都是在MySQL的命令行当中去操作演示的。这种方式可以用,但是使用的话,第一,在我们日常…...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...