当前位置: 首页 > news >正文

yolov8+ROS+ubuntu18.04——学习记录

参考文献

1.Ubuntu配置Yolov8环境并训练自己的数据集 + ROS实时运行

2.https://juejin.cn/post/7313979467965874214

前提:

1.CUDA和Anaconda,PyTorch

2.python>=3.8

一、创建激活环境,安装依赖

1.创建虚拟环境

conda create -n yolov8 python=3.8

2.激活虚拟环境

conda activate yolov8

3.安装yolov8

pip install ultralytics

 清华源安装

pip install ultralytics -i  https://pypi.tuna.tsinghua.edu.cn/simple/

安装rospkg

pip install rospkg

二、安装数据标注软件并使用

1.激活刚刚建的虚拟环境

conda activate yolov8

2.安装数据标注软件

pip install labelImg

清华源安装

pip install labelImg -i  https://pypi.tuna.tsinghua.edu.cn/simple/

3.启动标注软件

labelImg

 4.标注软件的使用

(1).打开目录:选择你拍摄图片存放的文件夹,我的是yolo2/data/images

(2).改变存放目录:选择你要将标注存放的文件夹,yolo2/data/Annotations

(3).选中查看-自动保存:这样无需自己保存

(4).点击创建区块:对要识别的物体进行标注,标注框紧贴物体,请勿框大或框小,有几个框几个,勿遗漏,不要两个框一起

(5).标签模式pascalVOC可以先不改成yolo模式,因为它保存的信息比较多,如果确定只用yolo也可以选择yolo模式

三、数据集的制作

在不同背景下拍摄要识别物体的照片,放在yolo2/data/images中。data下的文件夹包括:

(1).Annotations:数据集标注的文件(.xml)

(2).images:数据集图片 (.jpg)

(3).ImageSets:数据集划分(.txt)

(4).labels:数据集标注,yolo格式版(.txt)

数据集标注完成后,images、Annotations有了内容

1.数据集划分

yolo2文件夹下,创建一个文件splitDataset.py,内容如下:

import random
import ostrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

运行,ImageSets中会出现

2.将xml文件转换成yolo格式的txt文件

同样位置创建一个文件XML2TXT.py,内容如下

# xml解析包
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import joinsets = ['train', 'test', 'val']
classes = ['nut,bolt']# 进行归一化操作
def convert(size, box): # size:(原图w,原图h) , box:(xmin,xmax,ymin,ymax)dw = 1./size[0]     # 1/wdh = 1./size[1]     # 1/hx = (box[0] + box[1])/2.0   # 物体在图中的中心点x坐标y = (box[2] + box[3])/2.0   # 物体在图中的中心点y坐标w = box[1] - box[0]         # 物体实际像素宽度h = box[3] - box[2]         # 物体实际像素高度x = x*dw    # 物体中心点x的坐标比(相当于 x/原图w)w = w*dw    # 物体宽度的宽度比(相当于 w/原图w)y = y*dh    # 物体中心点y的坐标比(相当于 y/原图h)h = h*dh    # 物体宽度的宽度比(相当于 h/原图h)return (x, y, w, h)    # 返回 相对于原图的物体中心点的x坐标比,y坐标比,宽度比,高度比,取值范围[0-1]# year ='2012', 对应图片的id(文件名)
def convert_annotation(image_id):'''将对应文件名的xml文件转化为label文件,xml文件包含了对应的bunding框以及图片长款大小等信息,通过对其解析,然后进行归一化最终读到label文件中去,也就是说一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去labal文件中的格式:calss x y w h  同时,一张图片对应的类别有多个,所以对应的bunding的信息也有多个'''# 对应的通过year 找到相应的文件夹,并且打开相应image_id的xml文件,其对应bund文件in_file = open('data/Annotations/%s.xml' % (image_id), encoding='utf-8')# 准备在对应的image_id 中写入对应的label,分别为# <object-class> <x> <y> <width> <height>out_file = open('data/labels/%s.txt' % (image_id), 'w', encoding='utf-8')# 解析xml文件tree = ET.parse(in_file)# 获得对应的键值对root = tree.getroot()# 获得图片的尺寸大小size = root.find('size')# 如果xml内的标记为空,增加判断条件if size != None:# 获得宽w = int(size.find('width').text)# 获得高h = int(size.find('height').text)# 遍历目标objfor obj in root.iter('object'):# 获得difficult ??difficult = obj.find('difficult').text# 获得类别 =string 类型cls = obj.find('name').text# 如果类别不是对应在我们预定好的class文件中,或difficult==1则跳过if cls not in classes or int(difficult) == 1:continue# 通过类别名称找到idcls_id = classes.index(cls)# 找到bndbox 对象xmlbox = obj.find('bndbox')# 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax']b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))print(image_id, cls, b)# 带入进行归一化操作# w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax']bb = convert((w, h), b)# bb 对应的是归一化后的(x,y,w,h)# 生成 calss x y w h 在label文件中out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')# 返回当前工作目录
wd = getcwd()
print(wd)for image_set in sets:'''对所有的文件数据集进行遍历做了两个工作:1.将所有图片文件都遍历一遍,并且将其所有的全路径都写在对应的txt文件中去,方便定位2.同时对所有的图片文件进行解析和转化,将其对应的bundingbox 以及类别的信息全部解析写到label 文件中去最后再通过直接读取文件,就能找到对应的label 信息'''# 先找labels文件夹如果不存在则创建if not os.path.exists('data/labels/'):os.makedirs('data/labels/')# 读取在ImageSets/Main 中的train、test..等文件的内容# 包含对应的文件名称image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()# 打开对应的2012_train.txt 文件对其进行写入准备list_file = open('data/%s.txt' % (image_set), 'w')# 将对应的文件_id以及全路径写进去并换行for image_id in image_ids:list_file.write('data/images/%s.jpg\n' % (image_id))# 调用  year = 年份  image_id = 对应的文件名_idconvert_annotation(image_id)# 关闭文件list_file.close()

 这一步产生的yolo2下面的.txt文件有用,但是转xml文件没成功,不知道为什么,所以再在同样位置创建一个文件XML2TXT2.py,内容如下

# -*- coding: utf-8 -*-
#这个可以运行
import os
import xml.etree.ElementTree as ETdirpath = 'data/Annotations'  # 原来存放xml文件的目录
newdir = 'data/labels'                # 修改label后形成的txt目录if not os.path.exists(newdir):os.makedirs(newdir)dict_info = {'nut': 0, 'bolt': 1}             # 有几个 属性 填写几个label namesfor fp in os.listdir(dirpath):if fp.endswith('.xml'):root = ET.parse(os.path.join(dirpath, fp)).getroot()xmin, ymin, xmax, ymax = 0, 0, 0, 0sz = root.find('size')width = float(sz[0].text)height = float(sz[1].text)filename = root.find('filename').textfor child in root.findall('object'):  # 找到图片中的所有框sub = child.find('bndbox')  # 找到框的标注值并进行读取label = child.find('name').textlabel_ = dict_info.get(label)if label_:label_ = label_else:label_ = 0xmin = float(sub[0].text)ymin = float(sub[1].text)xmax = float(sub[2].text)ymax = float(sub[3].text)try:  # 转换成yolov3的标签格式,需要归一化到(0-1)的范围内x_center = (xmin + xmax) / (2 * width)x_center = '%.6f' % x_centery_center = (ymin + ymax) / (2 * height)y_center = '%.6f' % y_centerw = (xmax - xmin) / widthw = '%.6f' % wh = (ymax - ymin) / heighth = '%.6f' % hexcept ZeroDivisionError:print(filename, '的 width有问题')with open(os.path.join(newdir, fp.split('.xml')[0] + '.txt'), 'a+') as f:f.write(' '.join([str(label_), str(x_center), str(y_center), str(w), str(h) + '\n']))
print('ok')

运行之后,labels文件夹下会出现相关文件。

3.data下新建fall.yaml

内容

train: /home/dyj/yolo3/data/train.txt
val: /home/dyj/yolo3/data/val.txt
test: /home/dyj/yolo3/data/test.txt# number of classes
nc: 2# class names
names: ['nut','bolt']

nc:类别数量    names: ['nut','bolt']:类别名称  需要修改

四、运行

yolo task=detect mode=train model=yolov8n.pt data=data/fall.yaml batch=32 epochs=100 imgsz=640 workers=16 device=0 

相关文章:

yolov8+ROS+ubuntu18.04——学习记录

参考文献 1.Ubuntu配置Yolov8环境并训练自己的数据集 ROS实时运行 2.https://juejin.cn/post/7313979467965874214 前提&#xff1a; 1.CUDA和Anaconda&#xff0c;PyTorch 2.python>3.8 一、创建激活环境&#xff0c;安装依赖 1.创建虚拟环境 conda create -n yol…...

Java小抄(一)|Java中的List与Set转换

文章目录 List和Set的区别线程安全的区别相互转换List->SetSet->List List和Set的区别 在Java中&#xff0c;List和Set都是集合接口&#xff0c;它们之间有几个关键的区别&#xff1a; 重复元素&#xff1a; List允许重复元素&#xff0c;可以存储相同的元素多次。Set…...

【每日随笔】小人畏威不怀德 , 君子畏德不畏威 ( 先礼后兵 )

文章目录 一、小人畏威不怀德1、小人畏威不怀德2、小人场景一3、小人场景二 二、君子畏德不畏威三、先礼后兵 一、小人畏威不怀德 1、小人畏威不怀德 如果 友善 的对待 小人 , 这种人 认知低 且 素质差 , 小人 会将你的 " 友善 " 理解为 " 屈服 " , 他会认…...

不一样的2024

当我们继续往前走时&#xff0c;发现身边的事物不再那么的陌生&#xff0c;也不再那边多的阻碍&#xff0c;不管怎么&#xff0c;2024将会不一样。 当我们走进审批流时&#xff0c;全面石荒芜的&#xff0c;所以自己构建了一个体系。 当我们转向开源时&#xff0c;发现开源与…...

linux mv操作和cp操作

mv 和 cp 是 Linux 系统中用于移动和复制文件或文件夹的两个常用命令&#xff0c;它们之间的主要区别在于&#xff1a; mv&#xff08;move&#xff09;&#xff1a;mv 命令用于移动文件或文件夹&#xff0c;将它们从一个位置移动到另一个位置。移动后&#xff0c;原始文件或文…...

第十二届蓝桥杯物联网试题(国赛)

不得不说国赛相比较省赛而言确实&#xff0c;功能变得更加复杂&#xff0c;更加繁琐&#xff0c;特别是串口LORA通信相结合的更加频繁&#xff0c;且对收取的字符处理要求要更加复杂&#xff0c;处理判别起来会更加复杂。 对于收发数据本身来说&#xff0c;收发的数据本身是以…...

小而美的前端库推荐

小而美&#xff0c;指的是“小即是美”的事物&#xff0c;这是马云在 2009年 APEC 中小企业峰会上首次提出的观点 &#x1f44d; 前端有很多小而美的库&#xff0c;接入成本很低又能满足日常开发需求 &#x1f389;...

【LeetCode】力扣第 399 场周赛 优质数对的总数 II

文章目录 1. 优质数对的总数 II 1. 优质数对的总数 II 题目链接 &#x1f34e;该题涉及的小技巧&#xff1a;&#x1f425; &#x1f427;①一次可以统计这个数的 两个因子 但是要注意 25 5 * 5&#xff0c;这种情况 5 只能统计一次噢&#x1f192; 解题思路: &#x1f427…...

YOLOv8+PyQt5面部表情检测系统完整资源集合(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

1.资源包含可视化的面部表情检测系统&#xff0c;基于最新的YOLOv8训练的面部表情检测模型&#xff0c;和基于PyQt5制作的可视化面部表情检测系统&#xff0c;包含登陆页面、注册页面和检测页面&#xff0c;该系统可自动检测和识别图片或视频当中出现的八类面部表情&#xff1a…...

ROS 工作空间

ROS 工作空间 工作空间概念 ROS 的工作空间 在 ROS 中&#xff0c;工作空间&#xff08;通常称为 Catkin 工作空间&#xff09;是一个文件夹&#xff08;目录&#xff09;结构&#xff0c;它用于组织、构建和管理 ROS 项目中的软件包。主要特点包括&#xff1a; 1. 目录结构…...

【科普】ChatGPT-4o 是什么?和之前的ChatGPT4.0有什么区别,各有什么优劣势

文章目录 前言一、ChatGPT-4o 是什么&#xff1f;**主要特点和改进**&#xff1a; 二、ChatGPT-4o 和之前的ChatGPT4.0有什么区别&#xff0c;各有什么优劣势区别优势和劣势ChatGPT-4.0ChatGPT-4o 前言 5月13日&#xff0c;ChatGPT-4o发布&#xff0c;是人工智能的进一步发展&…...

django-celery-beat自动调度异步任务

Celery是一个简单、灵活且可靠的分布式系统&#xff0c;专门用于处理大量消息的实时任务调度。它支持使用任务队列的方式在分布的机器、进程、线程上执行任务调度。Celery不仅支持异步任务&#xff08;如发送邮件、文件上传、图像处理等耗时操作&#xff09;&#xff0c;还支持…...

【CSharp】将ushort数组保存为1通道位深16bit的Tiff图片

【CSharp】将ushort数组保存为1通道位深16bit的Tiff图片 1.背景2.接口 1.背景 System.Drawing.Common 是一个用于图像处理和图形操作的库&#xff0c;它是 System.Drawing 命名空间的一部分。由于 .NET Core 和 .NET 5 的跨平台特性&#xff0c;许多以前内置于 .NET Framework…...

Bug:Linux用户拥有r权限但无法打开文件【Linux权限体系】

Bug&#xff1a;Linux用户拥有r权限但无法打开文件【Linux权限体系】 0 问题描述&解决 问题描述&#xff1a; 通过go编写了一个程序&#xff0c;产生的/var/log/xx日志文件发现普通用户无权限打开 - 查看文件权限发现该文件所有者、所有者组、其他用户均有r权限 - 查看该日…...

【Redis】Widows 和 Linux 下使用 Redis

Redis 简述 1.缓存 缓存就是将数据存放在距离计算最近的位置以加快处理速度。缓存是改善软件性能的第一手段,现代 CPU 越来越快的一个重要因素就是使用了更多的缓存,在复杂的软件设计中,缓存几乎无处不在。大型网站架构设计在很多方面都使用了缓存设计。 2.Redis Redis …...

统计计算四|蒙特卡罗方法(Monte Carlo Method)

系列文章目录 统计计算一|非线性方程的求解 统计计算二|EM算法&#xff08;Expectation-Maximization Algorithm&#xff0c;期望最大化算法&#xff09; 统计计算三|Cases for EM 文章目录 系列文章目录一、基本概念&#xff08;一&#xff09;估算 π \pi π&#xff08;二&…...

大模型时代的具身智能系列专题(三)

清华高阳团队 高阳为清华叉院助理教授&#xff0c;本科毕业于清华大学计算机系&#xff0c;博士毕业于UC Berkeley。博士导师是Vision领域的大牛Trevor Darrell&#xff0c;读博期间和Sergey Levine合作开始强化学习方面的探索&#xff0c;博后跟随Pieter Abbeel做强化学习&am…...

使用 FileZilla 在 Windows 和 Ubuntu 之间传文件

网线一端插在板子的WAN口上&#xff0c;另一段插在电脑上&#xff0c;然后要配一下板子的IP。 板侧&#xff1a; 使用串口链接板子与PC端&#xff1b; 输入指令 ifconfig eth0&#xff08;具体看wan口对应哪一个&#xff09; 192.168.1.99 PC端配置&#xff1a; 打开网络设…...

【C++初阶】—— 类和对象 (上)

&#x1f4dd;个人主页&#x1f339;&#xff1a;EterNity_TiMe_ ⏩收录专栏⏪&#xff1a;C “ 登神长阶 ” &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 类和对象 1. 初步认识C2. 类的引入3. 类的定义声明和定义全部放在类体中声明和定义分开存放 4.…...

基础—SQL—图形化界面工具的DataGrip使用(2)

一、回顾与引言 &#xff08;1&#xff09; 上次内容&#xff0c;博客讲到了DDL语句的数据库操作、表操作、表字段的操作的相关语法&#xff0c;然而之前都是在MySQL的命令行当中去操作演示的。这种方式可以用&#xff0c;但是使用的话&#xff0c;第一&#xff0c;在我们日常…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...