当前位置: 首页 > news >正文

opencv的findContours()函数

来自WaTab AI Pro

请详细解释cv2.findContours():

cv2.findContours() 是 OpenCV 中用于检测图像轮廓的函数。轮廓可以看作是将连续的点(沿边界)连接在一起的一条曲线,具有相同的颜色或强度。该函数常用于图像处理和计算机视觉中的对象检测和识别。下面是 cv2.findContours() 的详细解释及其用法。

函数原型

contours, hierarchy = cv2.findContours(image, mode, method[, contours[, hierarchy[, offset]]])

参数解释

  • image: 输入图像,必须是二值图像(通常使用 cv2.threshold() 或 cv2.Canny() 进行二值化处理)。注意,cv2.findContours() 会修改输入图像。

  • mode: 轮廓检索模式。常用的模式有:

    • cv2.RETR_EXTERNAL:只检测外部轮廓。
    • cv2.RETR_LIST:检测所有轮廓,并将其放入列表中,但不创建轮廓间的层级关系。
    • cv2.RETR_CCOMP:检测所有轮廓并将它们组织成两级层次结构:顶层是外部边界,二级是空洞的边界。
    • cv2.RETR_TREE:检测所有轮廓并重构嵌套轮廓的完整层级。
  • method: 轮廓近似方法。常用的有:

    • cv2.CHAIN_APPROX_NONE:存储所有轮廓点,相邻两个点的像素位置差不超过1。
    • cv2.CHAIN_APPROX_SIMPLE:压缩水平、垂直和对角方向的元素,只保留端点,这样可以节省内存。
  • contours: 输出参数,轮廓的点集列表。

  • hierarchy: 输出参数,轮廓的层级结构。

返回值

  • contours: 一个 Python 列表,其中每个元素都是图像中的一个轮廓。每个轮廓本身又是一个点集。
  • hierarchy: 一个 Numpy 数组,轮廓的层级信息。

示例代码

以下是一个使用 cv2.findContours() 检测图像轮廓的示例代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('path/to/your/image.jpg', cv2.IMREAD_GRAYSCALE)# 二值化图像
ret, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 查找轮廓
contours, hierarchy = cv2.findContours(binary_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)# 在原图上绘制轮廓
contour_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)# 显示结果
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title('Binary Image')
plt.imshow(binary_image, cmap='gray')plt.subplot(1, 2, 2)
plt.title('Contours')
plt.imshow(contour_image)
plt.show()

代码解释

  1. 读取图像:使用 cv2.imread() 读取图像,并以灰度模式读取。
  2. 二值化图像:使用 cv2.threshold() 对图像进行二值化处理,生成二值图像。
  3. 查找轮廓:使用 cv2.findContours() 查找二值图像中的轮廓,选择 cv2.RETR_TREE 模式和 cv2.CHAIN_APPROX_SIMPLE 方法。
  4. 绘制轮廓:使用 cv2.drawContours() 在原始图像上绘制找到的轮廓,绿色表示轮廓。
  5. 显示结果:使用 Matplotlib 显示二值图像和绘制了轮廓的图像。

这样,通过这段代码,你可以检测并可视化图像中的轮廓。

相关文章:

opencv的findContours()函数

来自WaTab AI Pro 请详细解释cv2.findContours(): cv2.findContours() 是 OpenCV 中用于检测图像轮廓的函数。轮廓可以看作是将连续的点(沿边界)连接在一起的一条曲线,具有相同的颜色或强度。该函数常用于图像处理和计算机视觉中…...

多电压档hold扫尾

MMMC下STA收敛更为困难,setup通过DMSA可以很好的得到收敛;但是常规的时序修复工具很难通过工具得到最终clean的时序状态,本文介绍一种多模多角下hold的收敛方法。 该方法主要通过遍历hold路径上多电压setup的余量,支持从前往后和从…...

ABAP Json解析案例

ABAP解析返回的JSON 案例 DATA:LTOKEN TYPE STRING.DATA: LL_LINES(10),"行数LL_TABIX(10),"循环标号LL_PECNT TYPE P LENGTH 6 DECIMALS 2, "百分比LL_PECET(6),"百分数LL_TEXT(40)."消息CLEAR: LL_LINES,LL_TABIX,LL_PECNT,LL_PECET,LL_TEXT.* …...

QT学习(20):QStyle和自定义样式

QStyle 样式(继承自QStyle类)代表控件的绘制并封装GUI的外观。QStyle是一个封装了GUI外观的抽象基类。Qt使用QStyle去执行几乎所有的内置控件的绘制,确保控件外观和原生控件风格风格相同。 class Q_WIDGETS_EXPORT QStyle : public QObject{…...

香橙派 AIpro 昇腾 Ascend C++ 分类模型适配

香橙派 AIpro 昇腾 Ascend C 分类模型适配 flyfish 文章目录 香橙派 AIpro 昇腾 Ascend C 分类模型适配前言一、PyTorch官网resnet模型处理方式1、PyTorch模型 导出 onnx格式2、完整测试 输出top1结果3、完整测试 输出top5结果 二、YOLOv8官网resnet模型Python处理方式三、昇腾…...

2024吉林省电赛(达盛杯)

1. 电赛F4系统板3D图 提起自制STM32F407VET6系统板 2. 电赛原理图 3. 电赛PCB图 4. 智能车实物图 下图是电赛的实物图,结构采用3D打印 5. 软件设计 下图是程序设计图 6. 仿真视频 (1) 变化高度 2024吉林省电赛仿真1 (2) 变化轮距 2024电赛仿真2 7. APP控制小车 …...

【算法题】520 钻石争霸赛 2024 全解析

都是自己写的代码,发现自己的问题是做题速度还是不够快 520-1 爱之恒久远 在 520 这个特殊的日子里,请你直接在屏幕上输出:Forever and always。 输入格式: 本题没有输入。 输出格式: 在一行中输出 Forever and always…...

Yii 结合MPDF 给PDF文件添加多行水印

首先确保安装了mpdf扩展 composer require mpdf/mpdf public function createWaterPdf($file_path,$water_text){date_default_timezone_set(PRC);ini_set(memory_limit, 6400M);ini_set(max_execution_time, 0);try{$mpdf new Mpdf();$pageCount $mpdf->SetSourceFile…...

你什么时候感觉学明白Java了?

学是学不明白Java的,要学明白Java,一定只能在工作以后。 1 在学习阶段,哪怕是借鉴别人的学习路线,其实依然会学很多不必要的技能,比如jsp,swing,或者多线程,或者设计模式。 2 或者…...

马斯克xAI融资60亿美元,宣布打造世界第一超算中心,10万张H100GPU

昨天,埃隆马斯克的xAI初创公司宣布获得60亿美元的巨额融资,主要用于打造一台巨大的超级计算机,马斯克称之为“超级计算工厂”。 从创立OpenAI到如今的xAI,技术和算力的发展历经了几个时代,但似乎马斯克的吸金能力一直…...

贪心算法[1]

首先用最最最经典的部分背包问题来引入贪心的思想。 由题意可知我们需要挑选出价值最大的物品放入背包&#xff0c;价值即单位价值。 我们需要计算出每一堆金币中单位价值。金币的属性涉及两个特征&#xff0c;重量和价值。 所以我们使用结构体。 上代码。 #include <i…...

卢文岩博士受邀参与中国科学院大学校友论坛 解码DPU核心价值

近日&#xff0c;第五届中国科学院大学校友创新论坛正式举行&#xff0c;本次论坛聚焦科技前沿领域&#xff0c;旨在搭建高端对话平台&#xff0c;促进产学研深度融合。在大算力时代——AI技术前沿沙龙上&#xff0c;中科驭数高级副总裁、CTO卢文岩博士受邀分享《DPU——连接算…...

2024年上半年软件设计师试题及答案(回忆版)

目录 基础知识选择题案例题1.缺陷识别的数据流图2.球队、球员、比赛记录的数据库题3.用户、老师、学生、课程用例图4.算法题5.程序设计题基础知识选择题 树的节点,度为4的有4个,度为3的有8个,度为2个有6个,度为1的有10个,问有几个叶子结点 二位数组,一个元素2个字节,A0…...

QGIS使用python代码导出给定坐标图片

代码基于https://blog.csdn.net/x572722344/article/details/108121230进行修改&#xff0c;代码在QGIS内部编译器运行 # -*- coding: utf-8 -*- from osgeo import ogr# 像素[高, 宽] px_geosize [2.645859085290482, 2.6458015267176016]# 待裁剪影像的坐标范围[min_x, min…...

看花眼,眼花缭乱的主食冻干到底应该怎么选?靠谱的主食冻干分享

随着科学养猫知识的普及&#xff0c;主食冻干喂养越来越受到养猫人的青睐。主食冻干不仅符合猫咪的饮食天性&#xff0c;还能提供均衡的营养&#xff0c;有助于维护猫咪的口腔和消化系统健康。许多猫主人认识到了主食冻干喂养的诸多益处&#xff0c;计划尝试这种喂养方式&#…...

开源VS闭源:谁更能推动AI技术的普及与发展?

一、引言 在人工智能&#xff08;AI&#xff09;技术的浪潮中&#xff0c;开源与闭源两种模式一直并存&#xff0c;并各自在推动AI技术普及与发展上发挥着重要作用。然而&#xff0c;关于哪种模式更能有效地推动AI技术的普及与发展&#xff0c;一直存在着激烈的讨论。本文将深…...

前端面试题日常练-day28 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备&#xff0c;答案在文末。 1. 在Vue中&#xff0c;以下哪个选项用于监听组件生命周期钩子函数&#xff1f; a) watch b) computed c) lifecycle d) created 2. 在Vue中&#xff0c;以下哪个选项用于在列表渲染时为每个元素…...

好消息!DolphinScheduler官网集成LLM模型问答AI kapa.ai

不少小伙伴可能发现了&#xff0c;Apache DolphinScheduler官网最近默默上线了kapa.ai作为LLM的问答AI。 集成kapa.ai之后&#xff0c;社区用户可以点击Apache DolphinScheduler官网首页右下角的「Ask AI」模块&#xff0c;在接下来弹出的问答框输入自己的问题&#xff0c;即可…...

【软考】下篇 第19章 大数据架构设计理论与实践

目录 大数据处理系统架构特征Lambda架构Lambda架构介绍Lambda架构实现Lambda架构优缺点Lambda架构与其他架构模式对比 Kappa架构Kappa架构介绍Kappa架构实现Kappa架构优缺点 常见Kappa架构变形&#xff08;Kappa、混合分析系统&#xff09;Kappa架构混合分析系统的Kappa架构 La…...

创新指南|降低 TikTok CPA 的 9 项专家策略

企业在 TikTok 上投放广告&#xff0c;往往最想确保获得最佳的投资回报。然而&#xff0c;这往往说起来容易做起来难。您需要了解如何利用不同的营销工具、定位策略和创意执行来实现您的业务目标并提高成本效率。本文将分享 9 个行之有效的策略&#xff0c;助您有效降低 TikTok…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...