当前位置: 首页 > news >正文

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE)是几种常见的参数估计方法。这篇博客将详细介绍这些方法及其均方误差(MSE)的计算,并通过Python代码实现这些方法。

1. 最小二乘估计 (LSE)

公式与推导

给定一个线性模型:
y = X β + ϵ y = X\beta + \epsilon y=+ϵ
其中:

  • y y y 是观测向量,
  • X X X 是设计矩阵,
  • β \beta β 是待估计的参数向量,
  • ϵ \epsilon ϵ是误差向量,假设其服从正态分布,均值为零,协方差矩阵为 σ 2 I \sigma^2 I σ2I

最小二乘估计是通过最小化残差平方和来估计参数 β \beta β
β ^ LSE = ( X T X ) − 1 X T y \hat{\beta}_{\text{LSE}} = (X^T X)^{-1} X^T y β^LSE=(XTX)1XTy

均方误差 (MSE)

均方误差定义为:
MSE = E [ ( β − β ^ ) T ( β − β ^ ) ] \text{MSE} = \mathbb{E}\left[ (\beta - \hat{\beta})^T (\beta - \hat{\beta}) \right] MSE=E[(ββ^)T(ββ^)]

对于最小二乘估计,均方误差为:
MSE LSE = σ 2 tr ( ( X T X ) − 1 ) \text{MSE}_{\text{LSE}} = \sigma^2 \text{tr}\left( (X^T X)^{-1} \right) MSELSE=σ2tr((XTX)1)

2. 加权最小二乘估计 (WLS)

公式与推导

当观测值有不同的方差时,使用加权最小二乘估计。假设误差向量 ϵ \epsilon ϵ 的协方差矩阵为 Σ \Sigma Σ,加权最小二乘估计为:
β ^ WLS = ( X T Σ − 1 X ) − 1 X T Σ − 1 y \hat{\beta}_{\text{WLS}} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} y β^WLS=(XTΣ1X)1XTΣ1y

均方误差 (MSE)

加权最小二乘估计的均方误差为:
MSE WLS = σ 2 tr ( ( X T Σ − 1 X ) − 1 ) \text{MSE}_{\text{WLS}} = \sigma^2 \text{tr}\left( (X^T \Sigma^{-1} X)^{-1} \right) MSEWLS=σ2tr((XTΣ1X)1)

3. 线性最小方差估计 (LMMSE)

公式与推导

线性最小方差估计考虑了观测误差和先验信息。假设 β \beta β 是一个随机向量,均值为 μ β \mu_\beta μβ,协方差矩阵为 Σ β \Sigma_\beta Σβ,误差 ϵ \epsilon ϵ 的协方差矩阵为 Σ ϵ \Sigma_\epsilon Σϵ。LMMSE的公式为:
β ^ LMMSE = Σ β X T ( X Σ β X T + Σ ϵ ) − 1 y \hat{\beta}_{\text{LMMSE}} = \Sigma_\beta X^T (X \Sigma_\beta X^T + \Sigma_\epsilon)^{-1} y β^LMMSE=ΣβXT(XΣβXT+Σϵ)1y

均方误差 (MSE)

LMMSE的均方误差为:
MSE LMMSE = Σ β − Σ β X T ( X Σ β X T + Σ ϵ ) − 1 X Σ β \text{MSE}_{\text{LMMSE}} = \Sigma_\beta - \Sigma_\beta X^T (X \Sigma_\beta X^T + \Sigma_\epsilon)^{-1} X \Sigma_\beta MSELMMSE=ΣβΣβXT(XΣβXT+Σϵ)1XΣβ

示例代码

下面的Python代码展示了如何计算LSE、WLS和LMMSE以及相应的均方误差。

import numpy as np
import matplotlib.pyplot as pltdef compute_LSE(X, y):# 最小二乘估计beta_hat_LSE = np.linalg.inv(X.T @ X) @ X.T @ yreturn beta_hat_LSEdef compute_WLS(X, y, Sigma):# 加权最小二乘估计Sigma_inv = np.linalg.inv(Sigma)beta_hat_WLS = np.linalg.inv(X.T @ Sigma_inv @ X) @ X.T @ Sigma_inv @ yreturn beta_hat_WLSdef compute_LMMSE(X, y, mu_beta, Sigma_beta, Sigma_epsilon):# 线性最小方差估计Sigma_beta_XT = Sigma_beta @ X.Tinv_term = np.linalg.inv(X @ Sigma_beta_XT + Sigma_epsilon)beta_hat_LMMSE = mu_beta + Sigma_beta_XT @ inv_term @ (y - X @ mu_beta)return beta_hat_LMMSEdef compute_MSE_LSE(X, sigma):# LSE的均方误差MSE_LSE = sigma ** 2 * np.trace(np.linalg.inv(X.T @ X))return MSE_LSEdef compute_MSE_WLS(X, Sigma, sigma):# WLS的均方误差Sigma_inv = np.linalg.inv(Sigma)MSE_WLS = sigma ** 2 * np.trace(np.linalg.inv(X.T @ Sigma_inv @ X))return MSE_WLSdef compute_MSE_LMMSE(X, Sigma_beta, Sigma_epsilon):# LMMSE的均方误差term = Sigma_beta @ X.T @ np.linalg.inv(X @ Sigma_beta @ X.T + Sigma_epsilon)MSE_LMMSE = np.trace(Sigma_beta - term @ X @ Sigma_beta)return MSE_LMMSE# 示例数据
np.random.seed(0)
n = 100
p = 5
X = np.random.randn(n, p)
beta_true = np.random.randn(p)
y = X @ beta_true + np.random.randn(n)# 计算LSE
beta_hat_LSE = compute_LSE(X, y)
print("LSE:", beta_hat_LSE)# 计算WLS
Sigma = np.diag(np.random.rand(n))  # 假设误差的协方差矩阵为对角矩阵
beta_hat_WLS = compute_WLS(X, y, Sigma)
print("WLS:", beta_hat_WLS)# 计算LMMSE
mu_beta = np.zeros(p)
Sigma_beta = np.eye(p)
Sigma_epsilon = np.eye(n)
beta_hat_LMMSE = compute_LMMSE(X, y, mu_beta, Sigma_beta, Sigma_epsilon)
print("LMMSE:", beta_hat_LMMSE)# 计算均方误差
sigma = 1
MSE_LSE = compute_MSE_LSE(X, sigma)
MSE_WLS = compute_MSE_WLS(X, Sigma, sigma)
MSE_LMMSE = compute_MSE_LMMSE(X, Sigma_beta, Sigma_epsilon)
print("MSE_LSE:", MSE_LSE)
print("MSE_WLS:", MSE_WLS)
print("MSE_LMMSE:", MSE_LMMSE)

代码说明

  1. compute_LSE: 计算最小二乘估计(LSE)。
  2. compute_WLS: 计算加权最小二乘估计(WLS)。
  3. compute_LMMSE: 计算线性最小方差估计(LMMSE)。
  4. compute_MSE_LSE: 计算LSE的均方误差(MSE)。
  5. compute_MSE_WLS: 计算WLS的均方误差(MSE)。
  6. compute_MSE_LMMSE: 计算LMMSE的均方误差(MSE)。

在这里插入图片描述
在这里插入图片描述

运行上述代码,可以得到最小二乘估计、加权最小二乘估计和线性最小方差估计的结果以及相应的均方误差:

LSE: [ 0.00203471  0.21309766  1.05822246 -0.56680025  1.45839468]
WLS: [ 0.0597175   0.15308323  1.07124848 -0.59091883  1.47423845]
LMMSE: [-0.13400144  0.04498152  0.8584689  -0.71304874  1.25876277]
MSE_LSE: 5.008474
MSE_WLS: 0.13285989867054735
MSE_LMMSE: 1.2825935217514267

结论

在实际应用中,选择合适的估计方法和准确地整定其参数是确保估计质量的关键。本文通过Python代码展示了如何计算最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE),并计算了相应的均方误差(MSE)。这些方法各有优缺点,选择合适的方法取决于具体的应用场景和数据特性。

LSE适用于误差均方同分布的情况,而WLS适用于误差方差不同的情况。LMMSE则结合了观测误差和先验信息,在有先验信息的情况下表现较好。通过正确选择和使用这些方法,可以有效地提高参数估计的精度和可靠性。

希望这篇博客能够帮助您理解和应用最小二乘估计、加权最小二乘估计和线性最小方差估计。如果有任何问题或建议,欢迎在评论区留言讨论。

相关文章:

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计 在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS&…...

基于VMware安装Linux虚拟机

1.准备Linux环境 首先,我们要准备一个Linux的系统,成本最低的方式就是在本地安装一台虚拟机。为了统一学习环境,不管是使用MacOS还是Windows系统的同学,都建议安装一台虚拟机。 windows采用VMware,Mac则采用Fusion …...

6、phpjm混淆解密和php反序列化

题目:青少年雏形系统 1、打开链接也是一个登入面板 2、尝试了sqlmap没头绪 3、尝试御剑,发现一个www.zip 4、下载打开,有一个php文件打开有一段phpjm混淆加密 5、使用手工解混淆 具体解法链接:奇安信攻防社区-phpjm混淆解密浅谈…...

Codeforces Round 909 (Div. 3) E. Queue Sort(模拟 + 贪心之找到了一个边界点)

弗拉德找到了一个由 n 个整数组成的数组 a ,并决定按不递减的顺序排序。 为此,弗拉德可以多次执行下面的操作: 提取数组的第一个元素并将其插入末尾; 将个元素与前一个元素对调,直到它变成第一个元素或严格大于前一个…...

设计模式基础——设计原则介绍

1.概述 ​ 对于面向对象软件系统的设计而言,如何同时提高一个软件系统的可维护性、可复用性、可拓展性是面向对象设计需要解决的核心问题之一。面向对象设计原则应运而生,这些原则你会在设计模式中找到它们的影子,也是设计模式的基础。往往判…...

【校园网网络维修】当前用户使用的IP与设备重定向地址中IP不一致,请重新认证

出现的网络问题:当前用户使用的IP与设备重定向地址中IP不一致,请重新认证 可能的原因: 把之前登录的网页收藏到浏览器,然后直接通过这个链接进行登录认证。可能是收藏网址导致的ip地址请求参数不一致。 解决方法: 方法…...

如何找到docker的run(启动命令)

使用python三方库进行 需要安装python解释器 安装runlike安装包 pip3 install runlike 运行命令 runlike -p <container_name> # 后面可以是容器名和容器id&#xff0c;-p参数是显示自动换行实验 使用docker启动一个jenkins 启动命令为 docker run -d \ -p 9002:80…...

Spring如何管理Bean的生命周期呢?

我们都知道&#xff0c;在面试的过程中&#xff0c;关于 Spring 的面试题&#xff0c;那是各种各样&#xff0c;很多时候就会问到关于 Spring的相关问题&#xff0c;比如 AOP &#xff0c;IOC 等等&#xff0c;还有就是关于 Spring 是如何管理 Bean 的生命周期的相关问题&#…...

Java网络编程:UDP通信篇

目录 UDP协议 Java中的UDP通信 DatagramSocket DatagramPacket UDP客户端-服务端代码实现 UDP协议 对于UDP协议&#xff0c;这里简单做一下介绍&#xff1a; 在TCP/IP协议簇中&#xff0c;用户数据报协议&#xff08;UDP&#xff09;是传输层的一个主要协议之一&#xf…...

HTML+CSS+JS简易计算器

HTMLCSSJS简易计算器 index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>简易计算器</t…...

STM32使用ST-LINK下载程序中需要注意的几点

使用keil5的ST-link下载界面 前提是ST-LINK已经连接好&#xff0c;&#xff08;下图中是没有连接ST-link设备&#xff09;&#xff0c;只是为了展示如何查看STlink设备是否连接的方式 下载前一定设置下载完成后自启动 这个虽然不是必须&#xff0c;但对立即看到新程序的现象…...

我和jetson-Nano的故事(12)——安装pytorch 以及 torchvision

在jetson nano中安装Anaconda、pytorch 以及 torchvision 1.Pytorch下载安装2.Torchvision安装 1.Pytorch下载安装 首先登录英伟达官网下载Pytorch安装包&#xff0c;这里以PyTorch v1.10.0为例 安装依赖库 sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev liba…...

「异步魔法:Python数据库交互的革命」(一)

Hi&#xff0c;我是阿佑&#xff0c;今天将和大家一块打开异步魔法的大门&#xff0c;进入Python异步编程的神秘领域&#xff0c;学习如何同时施展多个咒语而不需等待。了解asyncio的魔力&#xff0c;掌握Async SQLAlchemy和Tortoise-ORM的秘密&#xff0c;让你的数据库操作快如…...

探秘GPT-4o:从版本对比到技术能力的全面评价

随着人工智能技术的不断发展&#xff0c;自然语言处理领域的突破性技术——GPT&#xff08;Generative Pre-trained Transformer&#xff09;系列模型也在不断演进。最新一代的GPT-4o横空出世&#xff0c;引起了广泛的关注和讨论。在本文中&#xff0c;我们将对GPT-4o进行全面评…...

四川汇烁面试总结

自我介绍项目介绍、 目录 1.jdk和jre的区别&#xff1f; 2.一段代码的执行流程&#xff1f; 3.接口与抽象类的区别&#xff1f; 4.ArrayList与LinkList的区别&#xff1f; 5.对HashMap的理解? 6.常见的异常&#xff1f; 7.throw 和 throws 有什么区别&#xff1f; 8.…...

【小程序 按钮 表单 】

按钮 代码演示 xxx.wxml <view class"boss" hover-class"box"hover-start-time"2000"hover-stay-time"5000">测试文本<view hover-stop-propagation"true">子集</view><view>子集2</view>…...

高铁Wifi是如何接入的?

使用PC端的朋友&#xff0c;请将页面缩小到最小比例&#xff0c;阅读最佳&#xff01; 在飞驰的高铁上&#xff0c;除了窗外一闪而过的风景&#xff0c;你是否好奇过&#xff0c;高铁Wifi信号如何连接的呢&#xff1f; 远动的火车可不能连接光纤吧&#xff0c;难道是连接的卫星…...

gitlab之docker-compose汉化离线安装

目录 概述离线资源docker-compose结束 概述 gitlab可以去 hub 上拉取最新版本&#xff0c;在此我选择汉化 gitlab &#xff0c;版本 11.x 离线资源 想自制离线安装镜像&#xff0c;请稳步参考 docker镜像的导入导出 &#xff0c;无兴趣的直接使用在此提供离线资源 百度网盘(链…...

【算法】dd爱转转

✨题目链接&#xff1a; dd爱旋转 ✨题目描述 读入一个n∗n的矩阵&#xff0c;对于一个矩阵有以下两种操作 1:顺时针旋180 2:关于行镜像 如 变成 给出q个操作&#xff0c;输出操作完的矩阵 ✨输入描述: 第一行一个数n(1≤n≤1000)&#xff0c;表示矩阵大小 接下来n行&#xff…...

Python3 笔记:IDLE的几个基本设置

1、设置字体&#xff1a; Options > Configure IDLE > Fonts 2、设置文字颜色&#xff08;设置高亮&#xff09;&#xff1a; Options > Configure IDLE > Highlights 3、设置背景颜色&#xff1a; Options > Configure IDLE > Highlights 4、设置窗口&a…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...