Android 13 VSYNC重学习
Android 13 VSYNC重学习
引言
学无止境,一个字干就完事!
源码参考基于Android 13 aosp!
一. Android VSync模块开胃菜
在开始正式的分析之前,我们先简单对Android的Vsync模块简单介绍下,如下图所示,其中:
- HW_VSync是由屏幕产生的脉冲信号,用于控制屏幕的刷新
- VSync-app和VSync-sf统称为软件VSync,它们是由SurfaceFlinger通过模拟硬件VSync而产生的VSync信号量,再分发给app和sf用来控制它们的合成节奏
二. Android VSync小结
这里有几点需要补充:
-
VSync-sf是没有对应的EventThread和DispSyncSource
-
VSync-app和VSync-appSf各自都有对应的EventThread和DispSyncSource
-
VSync-sf和VSync-app以及Sync-appSf通过Scheduler的成员mVsyncSchedule指向的VSyncDispatchTimerQueue实例对象关联
Android下VSync设计,牵涉的核心关系图如下:
2.1 VSync信号的分类
VSync信号分为两种:硬件VSync信号HW-VSync和软件VSync信号SW-VSync。SW-VSync信号由SW-VSync模型产生。HW-VSync信号负责对SW-VSync模型进行校准。
2.2 HW-Vsync信号的开启
三种场景下会开启硬件VSync信号HW-VSync会对软件VSync信号SW-VSync进行校准
-
SurfaceFlinger初始化。
-
连续两次请求VSync-app信号的时间间隔超过750ms。
-
SurfaceFlinger合成后,添加FenceTime到VSyncTracker中导致模型计算误差过大。
2.3 SW-VSync模型与计算
谷歌官方采用一元线性回归分析预测法(最小二乘法),通过采样的HW-VSync信号样本(屏幕刷新率),计算对应的SW-VSync信号周期。最终得到一条y=bx+a的拟合曲线。其中,b称为回归系数,a称为截距。SW-VSync模型就是这这条曲线的回归系数和截距。
2.4 SW-VSync信号的分类
SW-VSync信号也分为两种,VSync-sf信号和Vsync-app信号。这两个信号,各司其职:
- VSync-sf信号用于控制SurfaceFlinger的Layer合成
- VSync-app信号用于控制App渲染UI
VSync-sf信号和VSync-app信号是在SW-VSync信号的基础上通过叠加不同的偏移量产生,这些偏移量被称为VSync相位偏移。由于偏移量不同VSync-sf信号和VSync-app信号的回调时机也不同。
三. VSync-sf的申请和分发
VSync-sf用于控制SurfaceFlinger合成和渲染一帧图像。当SurfaceFlinger上帧时(BufferQueue中有新的GraphicBuffer),SurfaceFlinger会触发MessageQueue的scheduleFrame方法。接下来我们看下,VSync-sf是如何完成从申请到分发的流程。
3.1 VSync-sf的申请
SurfaceFlinger::scheduleCommit(...)//请求上帧mScheduler->scheduleFrame()//MessageQueue.cppmVsync.registration->schedule()//这里的registration实现是VSyncCallbackRegistration,定义在Scheduler/VSyncDispatchTimerQueue.cppmDispatch.get().schedule()//这里的mDispatch指向VSyncDispatchTimerQueue对象/*** @brief * * @param token * @param scheduleTiming * @return ScheduleResult * 1)根据CallbackToken找到所有满足要求的VSyncDispatchTimerQueueEntry。VSyncDispatchTimerQueueEntry是VSyncDispatchTimerQueue中对外部VSync信号请求的封装。* 2)遍历调用VSyncDispatchTimerQueue的schedule方法,计算下一次VSync信号的发送时间。* 3)对发射时间进行定时,等待下一次VSync信号的发送*/
ScheduleResult VSyncDispatchTimerQueue::schedule(CallbackToken token,ScheduleTiming scheduleTiming) {...//根据CallbackToken找到所有满足要求的VSyncDispatchTimerQueueEntry。VSyncDispatchTimerQueueEntry是VSyncDispatchTimerQueue中对外部VSync信号请求的封装。auto it = mCallbacks.find(token);auto& callback = it->second;//遍历调用VSyncDispatchTimerQueue的schedule方法,计算下一次VSync信号的发送时间result = callback->schedule(scheduleTiming, mTracker, now);//对发射时间进行定时,等待下一次VSync-sf信号的发送rearmTimerSkippingUpdateFor(now, it);VSyncDispatchTimerQueue::setTimer()void VSyncDispatchTimerQueue::setTimer(nsecs_t targetTime, nsecs_t /*now*/) {mIntendedWakeupTime = targetTime;mTimeKeeper->alarmAt(std::bind(&VSyncDispatchTimerQueue::timerCallback, this),mIntendedWakeupTime);mLastTimerSchedule = mTimeKeeper->now();
} /*** @brief * 1)遍历CallbackMap找到达到唤醒时间的VSyncDispatchTimerQueueEntry,并封装成Invocation,加入Invocation列表。* 2)遍历Invocation列表,通过Invocation获取VSyncDispatchTimerQueueEntry,并调用VSyncDispatchTimerQueueEntry的callback方法分发VSync信号。*///Scheduler/VSyncDispatchTimerQueue.cpp
void VSyncDispatchTimerQueue::timerCallback() {struct Invocation {std::shared_ptr<VSyncDispatchTimerQueueEntry> callback;nsecs_t vsyncTimestamp;nsecs_t wakeupTimestamp;nsecs_t deadlineTimestamp;};std::vector<Invocation> invocations;{std::lock_guard lock(mMutex);auto const now = mTimeKeeper->now();mLastTimerCallback = now;for (auto it = mCallbacks.begin(); it != mCallbacks.end(); it++) {auto& callback = it->second;auto const wakeupTime = callback->wakeupTime();if (!wakeupTime) {continue;}auto const readyTime = callback->readyTime();auto const lagAllowance = std::max(now - mIntendedWakeupTime, static_cast<nsecs_t>(0));if (*wakeupTime < mIntendedWakeupTime + mTimerSlack + lagAllowance) {callback->executing();invocations.emplace_back(Invocation{callback, *callback->lastExecutedVsyncTarget(),*wakeupTime, *readyTime});}}mIntendedWakeupTime = kInvalidTime;rearmTimer(mTimeKeeper->now());}for (auto const& invocation : invocations) {invocation.callback->callback(invocation.vsyncTimestamp, invocation.wakeupTimestamp,invocation.deadlineTimestamp);}
}}
3.2 VSync-sf的分发
那么VSync-df的callback是怎么注册到VSyncDispatchTimerQueue的呢,这个我们看下:
SurfaceFlinger::initScheduler(...)mScheduler->initVsync(...)//实现在Scheduler/MessageQueue.cpp中mVsync.registration = std::make_unique<scheduler::VSyncCallbackRegistration>(dispatch,std::bind(&MessageQueue::vsyncCallback, this,std::placeholders::_1,std::placeholders::_2,std::placeholders::_3),"sf");//这里的dispatch指向VSyncDispatchTimerQueue//Scheduler/VSyncDispatchTimerQueue.cppVSyncCallbackRegistration::VSyncCallbackRegistration(VSyncDispatch& dispatch,VSyncDispatch::Callback callback,std::string callbackName): mDispatch(dispatch),mToken(dispatch.registerCallback(std::move(callback), std::move(callbackName))),mValidToken(true) {} VSyncDispatchTimerQueue::CallbackToken VSyncDispatchTimerQueue::registerCallback(Callback callback, std::string callbackName) {std::lock_guard lock(mMutex);return CallbackToken{//最终注册到了mCallbacks中mCallbacks.emplace(++mCallbackToken,std::make_shared<VSyncDispatchTimerQueueEntry>(std::move(callbackName),std::move(callback),mMinVsyncDistance)).first->first};
}
所以最后VSync-sf的分发会调用到MessageQueue::vsyncCallback中,我们看下它的实现:
//Scheduler/MessageQueue.cpp
MessageQueue::vsyncCallback(...)mHandler->dispatchFrame(vsyncId, vsyncTime)mQueue.mLooper->sendMessage(this, Message())//Handle的handleMessage接收前面发过来的消息
void MessageQueue::Handler::handleMessage(const Message&) {mFramePending.store(false);const nsecs_t frameTime = systemTime();auto& compositor = mQueue.mCompositor;//这里的compositor实现类是SurfaceFlingerif (!compositor.commit(frameTime, mVsyncId, mExpectedVsyncTime)) {return;}compositor.composite(frameTime, mVsyncId);compositor.sample();
}
四. VSync-app的申请和分发
在开始后续的章节编写前,我们先重点申明下:
VSync-app用于控制App的UI渲染
VSync-app用于控制App的UI渲染
VSync-app用于控制App的UI渲染
4.1 VSync-app的申请
当Choreographer通过FrameDisplayEventReceiver调用scheduleVsync方法时,会触发VSync-app信号的申请。在FrameDisplayEventReceiver的scheduleVsync方法中,会调用nativeScheduleVsync方法。
FrameDisplayEventReceiver的nativeScheduleVsync方法对应的native实现为android_view_DisplayEventReceiver的nativeScheduleVsync函数。
在nativeScheduleVsync函数中,主要做了两件事:
-
获取native层的DisplayEventDispatcher。
-
调用DisplayEventDispatcher的scheduleVsync方法,请求VSync信号。
在DisplayEventDispatcher的scheduleVsync方法中,会调用DisplayEventReceiver的requestNextVsync方法。
在DisplayEventReceiver的requestNextVsync方法中,会调用IDisplayEventConnection的requestNextVsync方法。
IDisplayEventConnection是一个Binder类,对应bn端的实现类为BnDisplayEventConnection。而EventThreadConnection继承自BnDisplayEventConnection,因此实际调用的是EventThreadConnection的requestNextVsync方法。
在EventThreadConnection的requestNextVsync方法中,会调用EventThread的requestNextVsync方法。
在EventThread的requestNextVsync方法中,主要做了三件事:
-
开启硬件VSync信号对软件VSync信号进行校准。
-
标记EventThreadConnection的vsyncRequest,为后续信号分发做准备。
-
唤起EventThread对应的线程继续执行VSync信号的分发。
//Scheduler/EventThread.cpp
void EventThread::requestNextVsync(const sp<EventThreadConnection>& connection) {if (connection->resyncCallback) {/*** @brief * 调用到Scheduler::resync* 开启硬件Vsync信号对软件Vsync信号进行校准*/connection->resyncCallback();}std::lock_guard<std::mutex> lock(mMutex);if (connection->vsyncRequest == VSyncRequest::None) {connection->vsyncRequest = VSyncRequest::Single;mCondition.notify_all();//唤起EventThread中的线程} else if (connection->vsyncRequest == VSyncRequest::SingleSuppressCallback) {connection->vsyncRequest = VSyncRequest::Single;}
}
在EventThread的threadMain中,会通过VSyncCallbackRegistration请求或取消VSync信号。
如果是请求VSync信号,会调用VSyncCallbackRegistration的schedule方法。在VSyncCallbackRegistration的schedule方法,会调用VSyncDispatch的schedule方法。
void EventThread::threadMain(std::unique_lock<std::mutex>& lock) {if (mState != nextState) {if (mState == State::VSync) {mVSyncSource->setVSyncEnabled(false);} else if (nextState == State::VSync) {mVSyncSource->setVSyncEnabled(true);}mState = nextState;}}
之后的流程与VSync-sf信号的申请流程相同。在VSyncDispatchTimerQueue的schedule方法中,会调用scheduleLocked方法。
在VSyncDispatchTimerQueue的scheduleLocked方法中,主要做了三件事:
-
根据CallbackToken找到所有满足要求的VSyncDispatchTimerQueueEntry。VSyncDispatchTimerQueueEntry是VSyncDispatchTimerQueue中对外部VSync信号请求的封装。
-
遍历调用VSyncDispatchTimerQueue的schedule方法,计算下一次VSync信号的发送时间。
-
对发射时间进行定时,等待下一次VSync信号的发送。
4.2 VSync-app的分发
当定时时间到达时,TimerKeeper会回调VSyncDispatchTimerQueue的timerCallback方法。
在VSyncDispatchTimerQueue的timerCallback方法方法中,主要做了两件事:
-
遍历CallbackMap找到达到唤醒时间的VSyncDispatchTimerQueueEntry,并封装成Invocation,加入Invocation列表。
-
遍历Invocation列表,通过Invocation获取VSyncDispatchTimerQueueEntry,并调用VSyncDispatchTimerQueueEntry的callback方法分发VSync信号。
在VSyncDispatchTimerQueueEntry的callback方法中,会调用类型为CallbackRepeater::callbackk,然后在该方法中接着调用mCallback(vsyncTime, wakeupTime, readyTime)方法,而这里的mCallback(指向DispSyncSource::onVsyncCallback,最后回调EventThread的onVSyncEvent方法。
对于上述的分发流程是不是还有点懵逼,我们反过来看看VSync-app分发的注册,其核心是DispSyncSource和EventThread以及VSyncDispatchTimerQueue的各种回调callback流程:
//Scheduler/VSyncDispatchTimerQueue.cpp
VSyncDispatchTimerQueue::CallbackToken VSyncDispatchTimerQueue::registerCallback(Callback callback, std::string callbackName) {std::lock_guard lock(mMutex);return CallbackToken{mCallbacks.emplace(++mCallbackToken,std::make_shared<VSyncDispatchTimerQueueEntry>(std::move(callbackName),std::move(callback),mMinVsyncDistance)).first->first};
}//Scheduler/VSyncDispatchTimerQueue.cpp
VSyncCallbackRegistration::VSyncCallbackRegistration(VSyncDispatch& dispatch,VSyncDispatch::Callback callback,std::string callbackName): mDispatch(dispatch),mToken(dispatch.registerCallback(std::move(callback), std::move(callbackName))),mValidToken(true) {}//Scheduler/DispSyncSource.cpp
class CallbackRepeater {
public:CallbackRepeater(VSyncDispatch& dispatch, VSyncDispatch::Callback cb, const char* name,std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration,std::chrono::nanoseconds notBefore): mName(name),mCallback(cb),//VSyncCallbackRegistration mRegistration GUARDED_BY(mMutex);mRegistration(dispatch,std::bind(&CallbackRepeater::callback, this, std::placeholders::_1,std::placeholders::_2, std::placeholders::_3),mName),mStarted(false),mWorkDuration(workDuration),mReadyDuration(readyDuration),mLastCallTime(notBefore) {}~CallbackRepeater() {std::lock_guard lock(mMutex);mRegistration.cancel();}void start(std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration) {std::lock_guard lock(mMutex);mStarted = true;mWorkDuration = workDuration;mReadyDuration = readyDuration;auto const scheduleResult = mRegistration.schedule({.workDuration = mWorkDuration.count(),.readyDuration = mReadyDuration.count(),.earliestVsync = mLastCallTime.count()});LOG_ALWAYS_FATAL_IF((!scheduleResult.has_value()), "Error scheduling callback");}void stop() {std::lock_guard lock(mMutex);LOG_ALWAYS_FATAL_IF(!mStarted, "DispSyncInterface misuse: callback already stopped");mStarted = false;mRegistration.cancel();}void dump(std::string& result) const {std::lock_guard lock(mMutex);const auto relativeLastCallTime =mLastCallTime - std::chrono::steady_clock::now().time_since_epoch();StringAppendF(&result, "\t%s: ", mName.c_str());StringAppendF(&result, "mWorkDuration=%.2f mReadyDuration=%.2f last vsync time ",mWorkDuration.count() / 1e6f, mReadyDuration.count() / 1e6f);StringAppendF(&result, "%.2fms relative to now (%s)\n", relativeLastCallTime.count() / 1e6f,mStarted ? "running" : "stopped");}private:void callback(nsecs_t vsyncTime, nsecs_t wakeupTime, nsecs_t readyTime) {{std::lock_guard lock(mMutex);mLastCallTime = std::chrono::nanoseconds(vsyncTime);}mCallback(vsyncTime, wakeupTime, readyTime);{std::lock_guard lock(mMutex);if (!mStarted) {return;}auto const scheduleResult =mRegistration.schedule({.workDuration = mWorkDuration.count(),.readyDuration = mReadyDuration.count(),.earliestVsync = vsyncTime});LOG_ALWAYS_FATAL_IF(!scheduleResult.has_value(), "Error rescheduling callback");}}const std::string mName;scheduler::VSyncDispatch::Callback mCallback;mutable std::mutex mMutex;VSyncCallbackRegistration mRegistration GUARDED_BY(mMutex);bool mStarted GUARDED_BY(mMutex) = false;std::chrono::nanoseconds mWorkDuration GUARDED_BY(mMutex) = 0ns;std::chrono::nanoseconds mReadyDuration GUARDED_BY(mMutex) = 0ns;std::chrono::nanoseconds mLastCallTime GUARDED_BY(mMutex) = 0ns;
};mAppConnectionHandle =mScheduler->createConnection("app" .....)Scheduler::createConnection()auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration)return std::make_unique<scheduler::DispSyncSource>(mVsyncSchedule->getDispatch(),mVsyncSchedule->getTracker(), workDuration,readyDuration, traceVsync, name);//std::unique_ptr<CallbackRepeater> mCallbackRepeater;mCallbackRepeater =std::make_unique<CallbackRepeater>(vSyncDispatch,std::bind(&DispSyncSource::onVsyncCallback, this,std::placeholders::_1,std::placeholders::_2,std::placeholders::_3),name, workDuration, readyDuration,std::chrono::steady_clock::now().time_since_epoch()); mVSyncSource->setCallback(this);//为DispVsyncSource设置回调void DispSyncSource::setCallback(VSyncSource::Callback* callback) {std::lock_guard lock(mCallbackMutex);mCallback = callback;} //最终整理出来的Vsync-app分发流程为,各种弯弯绕绕:VSyncDispatchTimerQueue::timerCallback()//Scheduler/VSyncDispatchTimerQueue.cppinvocation.callback->callback(...)//这里的callback指向VSyncDispatchTimerQueueEntry::callback,Scheduler/VSyncDispatchTimerQueue.cppmCallback(vsyncTimestamp, wakeupTimestamp, deadlineTimestamp)//这里的 mCallback指向CallbackRepeater::callback,实现在Scheduler/DispSyncSource.cpp mCallback(vsyncTime, wakeupTime, readyTime)//这里的callback指向DispSyncSource::onVsyncCallback。是现在Scheduler/DispSyncSource.cppcallback = mCallback;callback->onVSyncEvent(targetWakeupTime, {vsyncTime, readyTime})//这里的callback指向EventThread::onVSyncEvent
在EventThread的onVSyncEvent方法中,主要做了三件事:
-
调用makeVSync函数,创建Event。
-
将Event加入到vector<DisplayEventReceiver::Event> 中。
-
唤醒等待线程,执行threadMain方法。
void EventThread::onVSyncEvent(nsecs_t timestamp, VSyncSource::VSyncData vsyncData) {std::lock_guard<std::mutex> lock(mMutex);LOG_FATAL_IF(!mVSyncState);//包装为DisplayEventReceiver::Event对象,存入mPendingEvents尾部mPendingEvents.push_back(makeVSync(mVSyncState->displayId, timestamp, ++mVSyncState->count,vsyncData.expectedPresentationTime,vsyncData.deadlineTimestamp));//唤醒线程mCondition.notify_all();
}
我们接下来看EventThread是如何处理分发事件的:
//Scheduler/EventThread.cpp
void EventThread::threadMain(std::unique_lock<std::mutex>& lock) {DisplayEventConsumers consumers;while (mState != State::Quit) {std::optional<DisplayEventReceiver::Event> event;// Determine next event to dispatch.if (!mPendingEvents.empty()) {event = mPendingEvents.front();mPendingEvents.pop_front(); ...}// Find connections that should consume this event.auto it = mDisplayEventConnections.begin();while (it != mDisplayEventConnections.end()) {if (const auto connection = it->promote()) {vsyncRequested |= connection->vsyncRequest != VSyncRequest::None;//用来在任务的循环执行中保存当前Vsync信号的消费者if (event && shouldConsumeEvent(*event, connection)) {consumers.push_back(connection);//这里的consumers就是待分发的目标}++it;} else {it = mDisplayEventConnections.erase(it);}} /*** @brief * 在该方法中,会循环分发信号,主要做了五件事情* 1) 从Vsync信息队列中获取消息* 2)收集监听Vsync信号的EventThreadConnection,并加入到consumers中* 3) 调用dispatchEvent方法来分发Vsync信号* 4)计算当前状态,根据状态请求或取消下一次VSync信号* 5)如果没有Vsync信号需要分发,线程进入等待状态*/if (!consumers.empty()) {dispatchEvent(*event, consumers);consumer->postEvent(copy)DisplayEventReceiver::sendEvents(...)consumers.clear();}
最终VSync-app分发的事件会被Choreographer模块接收,开始安排应用相关的渲染UI逻辑!
Andoid SurfaceFlinger(二) VSYNC的开始,连续,结束
VSYNC研究-最后的窗户纸
Android 12(S) 图像显示系统 - SurfaceFlinger之VSync-上篇(十六)
Android 12(S) 图像显示系统 - SurfaceFlinger 之 VSync - 中篇(十七)
深度详解 Android S(12.0)屏幕刷新机制之 Choreographer
View绘制流程3-Vsync信号是如何发送和接受的
Android R Vsync相关梳理
显示框架之深入Vsync原理
App/Sf的Vsync部分源码流程结合perfetto/systrace分析
Android-View绘制原理(02)-VSync原理之SurfaceFlinger篇
一文搞定Android VSync来龙机制去脉
VSync信号系统与SurfaceFlinger
SurfaceFlinger-Vsync信号
Android VSync事件分发过程源码分析
相关文章:

Android 13 VSYNC重学习
Android 13 VSYNC重学习 引言 学无止境,一个字干就完事! 源码参考基于Android 13 aosp! 一. Android VSync模块开胃菜 在开始正式的分析之前,我们先简单对Android的Vsync模块简单介绍下,如下图所示,其中: HW_VSync是…...
std::move和左值右值
引用:windows程序员面试指南 std::move std::move 是 C 标准库中的一个函数模板,用于将一个左值(左值引用)转化为右值引用,从而实现移动语义。 移动语义是一种可以将资源(如内存)从一个对象转…...
QT学习备份
2023年1月2日09:00:32 1.信号/槽编辑器 发送者:控件 信号:是控件发出的信号 接受者:包含控件的容器 槽:程序上用slot标识的方法 2.Q_OBJECT宏 只有继承了QObject类的类,才具有信号槽的能力。所以,为了使用…...

【wiki知识库】03.前后端的初步交互(展现所有的电子书)
📝个人主页:哈__ 期待您的关注 目录 一、🔥今日目标 二、📂前端配置文件补充 三、🌏前端Vue的改造 四、💡总结 一、🔥今日目标 在上一篇文章当中,我已带大家把后端的一些基本工…...
AOP——学习
AOP(面向切面编程)是Spring框架的重要特性之一,用于分离关注点并处理横切关注点,如日志记录、安全性和事务管理。在面试中,AOP相关的问题通常会涉及基本概念、应用场景、实际使用、以及与其他编程范式的比较。以下是一…...

Linux静态库、共享动态库介绍、制作及使用
参考学习:Linux下的各种文件 、动态库基本原理和使用方法,-fPIC选项的来龙去脉 、Linux静态库和动态库分析 文章写作参考:Linux共享库、静态库、动态库详解 - sunsky303 - 博客园 (cnblogs.com) 一.Linux共享库、静态库、动态库详解 使用G…...

【Paddle】稀疏计算的使用指南 稀疏ResNet的学习心得 (2) + Paddle3D应用实例稀疏 ResNet代码解读 (1.6w字超详细)
【Paddle】稀疏计算的使用指南 & 稀疏ResNet的学习心得 Paddle3D应用实例稀疏 ResNet代码解读 写在最前面一、稀疏格式简介1. COO(Coordinate Format)2. CSR(Compressed Sparse Row Format) 二、Paddle稀疏张量支持1. 创建 C…...
Linux系统维护
1. 批量安装部署 2. 初始化配置 3. 禁用Selinux 永久更改 SELinux 配置: 编辑 SELinux 配置文件:使用文本编辑器打开 /etc/selinux/config 文件: 在配置文件中,找到 SELINUX… 的行。将其值更改为以下选项之一: e…...

经典文献阅读之--RenderOcc(使用2D标签训练多视图3D Occupancy模型)
0. 简介 3D占据预测在机器人感知和自动驾驶领域具有重要的潜力,它将3D场景量化为带有语义标签的网格单元。最近的研究主要利用3D体素空间中的完整占据标签进行监督。然而,昂贵的注释过程和有时模糊的标签严重限制了3D占据模型的可用性和可扩展性。为了解…...
蓝牙设备中的UUID
文章目录 一、Device UUID二、Service UUID 一、Device UUID Device UUID也可以被称作为DeviceID。 Android 设备上扫描获取到的 deviceId 为外围设备的 MAC 地址,相对固定。iOS 设备上扫描获取到的 deviceId 是系统根据外围设备 MAC 地址及发现设备的时间生成的 …...

网络之再谈体系结构
大家都知道的是网络的体系结构,现代软件常用的体系结构无非是TCP/IP协议栈,OSI因为实现复杂并且效率没有TCP/IP协议栈好,所以不用OSI,但是,最近在复习网络知识的时候,发现了一些奇怪的地方,那就…...
在flutter initState 方法,触发 setState导致循环执行
在Flutter中,如果你在initState中调用了一个方法,并且这个方法可能导致状态更新,这可能会引起无限循环,因为每次状态更新都会再次调用initState。 为了避免这种情况,你应该检查调用的方法是否会导致状态更新ÿ…...
JavaScript字符串方法
charAt() 方法:返回指定索引处的字符。 示例: let str "Hello World"; console.log(str.charAt(0)); // Output: "H" console.log(str.charAt(6)); // Output: "W"charCodeAt() 方法:返回指定索引处字符的 Un…...
YD/T 2698-2014 《电信网和互联网安全防护基线配置要求及检测要求 网络设备》标准介绍
编写背景 随着互联网技术的飞速发展,网络设备的安全问题日益凸显。为了加强电信网和互联网的安全防护,保障网络环境的稳定和用户信息的安全,YD/T 2698-2014标准应运而生。此标准旨在为网络设备提供一套基线配置要求,以及相应的安…...
QCC30XX如何查找本地地址码
查找本地地址段/********************************************************************** Copyright (c) 2016 - 2017 Qualcomm Technologies International, Ltd. FILE NAME sink_private_data.c DESCRIPTION This module works as a container for all private and common…...

基于 DCT 的图像滤波
需求分析 对于图像去噪这一需求,我们可以通过DCT(离散余弦变换)算法来实现。DCT是一种基于频域的变换技术,可以将图像从空间域转换为频域,然后通过滤波等处理方式进行去噪。 针对这一需求,我们需要进行以下…...
spdlog日志库源码:自定义异常类spdlog_ex
自定义异常类spdlog_ex 标准库异常类(std::exception)系列,能满足大多数使用异常的场景,但对系统调用异常及错误信息缺乏支持。spdlog通过继承std::exception,扩展对系统调用的支持,实现自定义异常类spdlo…...
3.每日LeetCode-数组类,爬楼梯(Go,Java,Python)
目录 题目 解法 Go Java Python 代码地址:leetcode: 每日leetcode刷题 题目 题号70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入ÿ…...
单节点11.2.0.3参数文件恢复到RAC11.2.0.4启动失败
问题描述 通过pfile生成spfile失败,提示DATA磁盘不存在 SQL> create spfileDATA/DXJ/spfiledxj.ora from pfile/home/oracle/initdxj20240529.ora; create spfileDATA/DXJ/spfiledxj.ora from pfile/home/oracle/initdxj20240529.ora * ERROR at line 1: ORA-1…...

Windows电脑高颜值桌面便利贴,便签怎么设置
在这个看颜值的时代,我们不仅在衣着打扮上追求时尚与美观,就连电脑桌面也不愿放过。一张唯美的壁纸,几款别致的小工具,总能让我们的工作空间焕发出不一样的光彩。如果你也热衷于打造高颜值的电脑桌面,那么,…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
第14节 Node.js 全局对象
JavaScript 中有一个特殊的对象,称为全局对象(Global Object),它及其所有属性都可以在程序的任何地方访问,即全局变量。 在浏览器 JavaScript 中,通常 window 是全局对象, 而 Node.js 中的全局…...

ABAP设计模式之---“Tell, Don’t Ask原则”
“Tell, Don’t Ask”是一种重要的面向对象编程设计原则,它强调的是对象之间如何有效地交流和协作。 1. 什么是 Tell, Don’t Ask 原则? 这个原则的核心思想是: “告诉一个对象该做什么,而不是询问一个对象的状态再对它作出决策。…...