当前位置: 首页 > news >正文

【Text2SQL 论文】评估 ChatGPT 的 zero-shot Text2SQL 能力

论文:A comprehensive evaluation of ChatGPT’s zero-shot Text-to-SQL capability

⭐⭐⭐⭐

arXiv:2303.13547

这篇论文呢综合评估了 ChatGPT 在 zero-shot Text2SQL 任务上的表现。

dataset 使用了 Spider、Spider-SYN、Spider-DK、Spider-Realistic、Spider-CG、ADVETA、CSpider、DuSQL、SParC 以及 CoSQL。

由于 ChatGPT 生成的 SQL 多样性,所以这里主要使用了 execution accuracy 作为 metric。

一、使用的 Prompt

下图展示了使用 ChatGPT 来做 Text2SQL 的 prompts:

在这里插入图片描述

  • 上半的 prompt 是单轮对话的场景
  • 下半的 prompt 是多轮对话的场景

二、Evaluation Metrics

这里主要使用了三个 evaluation metric:

  • valid SQLVA):成功执行的 SQL 语句比例。
  • execution accuracyEX):执行结果与标准 SQL 匹配的比例
  • test-suite accuracyTS):测试套件是一组用于测试软件或系统特定部分的测试用例。在 Text2SQL 任务中,测试套件由一系列设计好的查询组成,这些查询旨在全面测试模型对不同 SQL 操作的理解和执行能力。这个指标通过执行测试套件中的所有测试用例,并根据执行准确性来评估模型的整体性能。它不仅考虑单个查询的成功执行,还考虑整个测试套件的覆盖率和成功率。

三、实验结果

整体上来说,ChatGPT 表现出很强的 Text2SQL 能力。

下面总结一些结论:

  • 在 Spider 数据集上,ChatGPT 的表现比 SOTA 低了 14%,但是 ChatGPT 是 zero-shot 的,且未在 training set 上做 fine-tune。
  • 在 Spider-SYN 和 Spider-Realistic 上,ChatGPT 表现也很不错,但与 SOTA 的差距稍大了一点,这也体现了当前的模型已经具备这两个场景的鲁棒性
  • 在多轮对话的场景和需要外部知识的场景下,ChatGPT 由于其强大的世界知识和上下文建模能力,表现特别好。
  • 在跨语言泛化的 Text2SQL 能力上,ChatGPT 的能力有待进一步改进。

做了一些 case study,发现 ChatGPT 总在一些小细节上犯错,论文给出了 4 个 error case:

  1. ChatGPT 倾向于使用 LEFT JOIN 来设计 JOIN,但这模式在 Spider 数据集上并不经常出现
  2. ChatGPT 经常对 database structure 产生迷惑性,导致找不到具体的 column
  3. 由于生成的 SQL 缺少正确的语义解释性,导致生成错误的带有嵌套 SQL 的 WHERE 子句
  4. 在 copy 特定 values 时出现错误,比如未保留大小写敏感性

四、总结

可以看出,ChatGPT 在 Text2SQL 任务上表现还不错,但仍然有不少的提高空间:

  • 与 ChatGPT 进行多轮交互,以解决生成不可执行的 SQL 语句的问题
  • 利用 DB 的报错来设计多轮对话,从而确保生成的 SQL 正确性
  • 引入 in-context learning

相关文章:

【Text2SQL 论文】评估 ChatGPT 的 zero-shot Text2SQL 能力

论文:A comprehensive evaluation of ChatGPT’s zero-shot Text-to-SQL capability ⭐⭐⭐⭐ arXiv:2303.13547 这篇论文呢综合评估了 ChatGPT 在 zero-shot Text2SQL 任务上的表现。 dataset 使用了 Spider、Spider-SYN、Spider-DK、Spider-Realistic、Spider-CG…...

安卓手机APP开发___设置闹钟

安卓手机APP开发___设置闹钟 目录 概述 设置不精确闹钟 在特定时间后发出闹钟 在特定时间范围内触发闹钟 以大致有规律的时间间隔响起重复闹钟 设置精确的闹钟 系统会在未来的某个精确时刻调用精确闹钟。 可能不需要精确闹钟的用例 设置精确闹钟的方法 系统资源消耗…...

如何评价GPT-4o

目录 1.概述 2.对比分析 2.1.版本 2.2.区别 2.2.1.技术方面的差异 2.2.2.性能提升 2.2.3.应用领域扩展 2.2.4.对未来发展的影响 3.技术能力 4.个人感受 1.概述 GPT-4o的发布无疑是人工智能领域的一次重要进展。作为GPT-4的升级版本,GPT-4o不仅在处理速度…...

自定义窗口事件循环系统

1.定义事件类型,mouse,wheel,drag,view。已处理的事件,accept需设置为true,防止重叠热区继续穿透。记录事件生成时间,全局位置和当前帧窗口下位置。 2.定义事件响应系统interactionSystem&…...

随机森林算法教程(个人总结)

背景 随机森林(Random Forest)是一种集成学习方法,主要用于分类和回归任务。它通过构建多个决策树并将其结果进行集成,提升模型的准确性和鲁棒性。随机森林在处理高维数据和防止过拟合方面表现出色,是一种强大的机器学…...

解决Android studio 一直提示下载gradle-xxx-all.zip问题

今天用AndroidStdiod打开一个新工程的时候,发现项目一直卡在正在下载gradle-xxx-all.zip的任务上,网络出奇的慢,即使配了VPN也无济于事,于是按照以往经验:将gradle-xxx-all.zip下载到.gradle\gradle\wrapper\dists目录…...

3DEXPERIENCE DELMIA Role: RVN - Robotics Virtual Commissioning Analyst

Discipline: Robotics Role: RVN - Robotics Virtual Commissioning Analyst 通过准确地模拟连接到PLC程序的机器人、设备和传感器,在制造虚拟孪生上执行虚拟调试情景 为任何机器人角色的多周期情景创建传感器,生成和变换零件启用 PLC 程序的虚拟验证和…...

js知识点之闭包

闭包 什么是闭包 闭包,是 JavaScript 中一个非常重要的知识点,也是我们前端面试中较高几率被问到的知识点之一。 打开《JavaScript 高级程序设计》和《 JavaScript 权威指南》,会发现里面针对闭包的解释各执一词,在网络上搜索关…...

LORA微调,让大模型更平易近人

技术背景 最近和大模型一起爆火的,还有大模型的微调方法。 这类方法只用很少的数据,就能让大模型在原本表现没那么好的下游任务中“脱颖而出”,成为这个任务的专家。 而其中最火的大模型微调方法,又要属LoRA。 增加数据量和模…...

LabVIEW全自动样品处理系统有哪些优势?

基于LabVIEW的全自动样品处理系统在现代科研和工业应用中展现出显著的优势,其在数据采集、分析和控制方面的性能使其成为提高效率和精度的理想选择。以下是该系统的详细优势: 高效自动化 LabVIEW的图形化编程语言极大地简化了自动化流程的开发。用户可…...

shell脚本操作http请求的返回值——shell处理json格式数据

日常工作中,我们经常会遇到http请求会返回大量格式固定的数据,而我们只需要其中的一部分,那么怎么提取我们想要的字段呢。 这里会介绍一种用shell脚本处理http请求返回,或者处理json格式数据的方式。 这里我们用到了 jq这个强大的…...

leetcode力扣 300. 最长递增子序列 II

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 示例 1&#…...

C++_vector简单源码剖析:vector模拟实现

文章目录 &#x1f680;1.迭代器&#x1f680;2.构造函数与析构函数⚡️2.1 默认构造函数vector()⚡️2.2 vector(int n, const T& value T())⚡️内置类型也有构造函数 ⚡️2.3 赋值重载operator⚡️2.4 通用迭代器拷贝⚡️2.5 vector(initializer_list<T> il)⚡️…...

第3章 数据链路层

王道学习 考纲内容 &#xff08;一&#xff09;数据链路层的功能 &#xff08;二&#xff09;组帧 &#xff08;三&#xff09;差错控制 检错编码&#xff1b;纠错编码 &#xff08;四&#xff09;流量控制与可靠传输机制 流量控制、可靠传输与滑动窗口…...

使用OrangePi KunPeng Pro部署AI模型

目录 一、OrangePi Kunpeng Pro简介二、环境搭建三、模型运行环境搭建(1)下载Ollama用于启动并运行大型语言模型(2)配置ollama系统服务(3)启动ollama服务(4)启动ollama(5)查看ollama运行状态四、模型部署(1)部署1.8b的qwen(2)部署2b的gemma(3)部署3.8的phi3(4)部署4b的qwen(5)部…...

SpringMVC 数据映射VC

从 view 层发送请求到Controller&#xff0c;在Controller中获取参数&#xff1a; 在不输入值时会报400&#xff0c;参数错误 在不输入值时num默认为null 没有找到对应标签名称叫nums的&#xff0c;输入任何值时都报400 设置required默认值为false&#xff0c;即使表单没有nums…...

Clickhouse Bitmap 类型操作总结—— Clickhouse 基础篇(四)

文章目录 创建 Bitmap 对象Bitmap 转换为整数数组计算总数&#xff08;去重&#xff09;值指定start, end 索引生成子 Bitmap指定 start 索引和数量限制生成子 Bitmap指定偏移量生成子 Bitmap是否包含指定元素两个 Bitmap 是否存在相同元素一个是否为另一个 Bitmap 的子集求最小…...

202474读书笔记|《我自我的田渠归来》——愿你拥有向上的力量,一切的好事都应该有权利发生

202474读书笔记|《我自我的田渠归来》——愿你拥有向上的力量 《我自我的田渠归来》作者张晓风&#xff0c;被称为华语散文温柔的一支笔&#xff0c;她的短文很有味道&#xff0c;角度奇特&#xff0c;温柔慈悲而敏锐。 很幸运遇到了这本书&#xff0c;以她的感受重新认识一些事…...

SheetJS V0.17.5 导入 Excel 异常修复 Invalid HTML:could not find<table>

导入 Excel 提示错误&#xff1a;Invalid HTML:could not find<table> 检查源代码 发现 table 属性有回车符 Overview: https://docs.sheetjs.com/docs/ Source: https://git.sheetjs.com/sheetjs/sheetjs/issues The public-facing websites of SheetJS: sheetjs.com…...

重学java51.Collections集合工具类、泛型

"我已不在地坛&#xff0c;地坛在我" —— 《想念地坛》 24.5.28 一、Collections集合工具类 1.概述:集合工具类 2.特点: a.构造私有 b.方法都是静态的 3.使用:类名直接调用 4.方法: static <T> boolean addAll(collection<? super T>c,T... el…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

Xcode 16 集成 cocoapods 报错

基于 Xcode 16 新建工程项目&#xff0c;集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...