当前位置: 首页 > news >正文

Linux学习笔记(epoll,IO多路复用)

Linux learning note

  • 1、epoll的使用场景
  • 2、epoll的使用方法和内部原理
    • 2.1、创建epoll
    • 2.2、使用epoll监听和处理事件
  • 3、示例

1、epoll的使用场景

epoll的英文全称是extend poll,顾名思义是poll的升级版。常见的IO复用技术有select,poll,epoll三种,本文只介绍epoll。
这里IO多路复用通俗理解是指用一个线程来管理多个输入/输出通道。具体到网络场景中,就是希望服务器只用一个线程就可以处理N个客户端的读写请求。
如果不适用IO多路复用技术,我们当然也可以实现一个服务端和N个客户端之间建立连接,但由于read函数经常被设置为阻塞式的,所以出现这么一种情况:服务器阻塞在客户端1的通道上,而当客户端2发送消息时便无法及时处理。
当然read函数也可以设置为非阻塞式的,不断的扫描哪个客户端发送消息,不过这样就很浪费CPU资源了。
总而言之,epoll在网络通信中几乎是必不可少的一项技术。

2、epoll的使用方法和内部原理

先概况性的讲,epoll是一个管理服务端和多个客户端的工具,当这些设备有“动作”的时候,epoll会通过中断察觉到这些“动作”,并及时去处理。
具体原理如下:

2.1、创建epoll

使用epoll_create()函数创建一个eventpoll的结构体,该结构体又嵌套着许多数据结构,用以维护epoll管理的多个服务器和客户端。其中较为重要的是一个存放服务器和所有客户端的文件描述符的红黑树和一个管理就绪事件的双向链表ready list
在这里插入图片描述
值得注意的是,epoll_create()只是创建eventpoll这么一个数据结构,具体红黑树中的节点的添加和删除需要依靠epoll_ctl()函数来完成。而epoll_ctl()不仅仅添加需要监控的文件描述符,还要添加一个名为epoll_event的结构体,我们可以通过该结构体设置我们需要监听的事件和触发中断的方式。
在这里插入图片描述
监听的事件和触发中断的方式都是通过设置epoll_event中的events这个成员变量来完成的,常规的设置有

struct event_poll ev;
ev.events = EPOLLIN;	//设置监听读事件,如果没有设置触发方式则默认使用水平触发
//or
ev.events = EPOLLIN | EPOLLET;	//设置监听读事件,且边缘触发
  • 水平触发(level triggered):当事件发生之后,一直产生中断,提醒CPU去处理。这也是默认的触发方式。
  • 边缘触发(edge triggered):当事件发生之后,只触发一次中断。

2.2、使用epoll监听和处理事件

这部分就相对简单许多了,无非是在while循环中使用一个epoll_wait()去监听哪一个设备有需要处理的事件。其中epoll_wait()时常被设置成阻塞性函数,即没有事件需要处理的时候就一直阻塞在那。如果有事件需要处理,CPU会把该事件对应的文件描述符放进ready_list,然后通过epoll_wait()函数再将ready_list中的文件描述符对应的设备的事件信息等依次放入epoll_event的队列中来。最后在通过对epoll_event中的文件描述符或事件类型的判断,去决定执行具体的任务。
在这里插入图片描述
可能有点难理解,那再看看代码把。

struct epoll_event events[1024];
int epollfd = epoll_create(1);
/***
A lot of code is omitted here
***/
while(true)
{int nfds = epoll_wait(epollfd, events, 1024, -1);for (int n = 0; n < nfds; ++n) {if (events[n].events & EPOLLIN)		//去处理一个个事件{/******/}}
}

3、示例

该例子完成了一个服务器对多个客户端的连接请求的监控以及对可读事件的回应。

#include <sys/epoll.h>
#include <netinet/in.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <iostream>#define MAX_EVENTS 10
#define READ_SIZE 1024int server_port = 8888;int main() {struct epoll_event ev, events[MAX_EVENTS];struct sockaddr_in addr;char buffer[READ_SIZE];int listen_sock = socket(AF_INET, SOCK_STREAM, 0);memset(&addr, 0, sizeof(addr));addr.sin_family = AF_INET;addr.sin_addr.s_addr = INADDR_ANY;addr.sin_port = htons(server_port);bind(listen_sock, (struct sockaddr*) &addr, sizeof(addr));listen(listen_sock, 5);int epollfd = epoll_create(1);ev.events = EPOLLIN;    ev.data.fd = listen_sock;epoll_ctl(epollfd, EPOLL_CTL_ADD, listen_sock, &ev);int nfds;  while(true) {nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1);for (int n = 0; n < nfds; ++n) {if (events[n].data.fd == listen_sock) {int con_sock = accept(listen_sock, (struct sockaddr *) NULL, NULL);ev.events = EPOLLIN | EPOLLET;ev.data.fd = con_sock;epoll_ctl(epollfd, EPOLL_CTL_ADD, con_sock, &ev);std::cout << "add a new client suessfully!" << std::endl;} else {if (events[n].events & EPOLLIN) {int len  = read(events[n].data.fd, buffer, sizeof(buffer));if(len > 0){std::cout << "server receive is: " << buffer << std::endl;static std::string send_str;send_str.append("receive suessfully!");write(events[n].data.fd, send_str.c_str(), send_str.length());memset(buffer, 0 , sizeof(buffer));send_str.erase(0);} }}}}close(listen_sock);return 0;
}

相关文章:

Linux学习笔记(epoll,IO多路复用)

Linux learning note 1、epoll的使用场景2、epoll的使用方法和内部原理2.1、创建epoll2.2、使用epoll监听和处理事件 3、示例 1、epoll的使用场景 epoll的英文全称是extend poll&#xff0c;顾名思义是poll的升级版。常见的IO复用技术有select&#xff0c;poll&#xff0c;epo…...

STM32定时器及输出PWM完成呼吸灯

文章目录 一、STM32定时器原理1、基本定时器2、通用定时器&#xff08;1&#xff09;时钟源&#xff08;2&#xff09;预分频器PSC&#xff08;3&#xff09;计数器CNT&#xff08;4&#xff09;自动装载寄存器ARR 3、高级定时器 二、PWM工作原理三、控制LED以2s的频率周期性地…...

海外仓管理系统费用解析:如何选择高性价比的海外仓系统

海外仓作为链接国内商家和海外市场的重要环节&#xff0c;其重要性自然是不言而喻的。 对于众多中小型海外仓来说&#xff0c;如何在保证服务质量的同时降低运营成本&#xff0c;就成了大家关注的焦点。今天我们就从海外仓管理系统的费用这个角度&#xff0c;来帮助大家分析一…...

深度学习之学习率调度器Scheduler介绍

调度器是深度学习训练过程中非常重要的一部分,它用于动态调整模型的学习率,从而提高训练效率和最终性能。 1. 为什么需要学习率调度器? 深度学习训练中,学习率是一个非常关键的超参数。合适的学习率可以确保模型快速收敛并获得良好的性能。 但是在训练过程中,最优的学习率会随…...

蓝桥杯-AB路线(详细原创)

问题描述&#xff1a; 有一个由 N M 个方格组成的迷宫&#xff0c;每个方格写有一个字母 A 或者 B。小蓝站在迷宫左上角的方格&#xff0c;目标是走到右下角的方格。他每一步可以移动到上下左右相邻的方格去。 由于特殊的原因&#xff0c;小蓝的路线必须先走 K 个 A 格子、再…...

计算机字符编码的发展

目录 背景 发展 第一阶段&#xff1a;ASCII编码 第二阶段&#xff1a;扩展ASCII编码 第三阶段&#xff1a;各国编码 第四阶段&#xff1a;Unicode编码 第五阶段&#xff1a;UTF系列编码方式 相关扩展 背景 在计算机诞生初期&#xff0c;所有的数据都是基于二进制数&am…...

Java(六)——抽象类与接口

文章目录 抽象类和接口抽象类抽象类的概念抽象类的语法抽象类的特性抽象类的意义 接口接口的概念接口的语法接口的特性接口的使用实现多个接口接口与多态接口间的继承抽象类和接口的区别 抽象类和接口 抽象类 抽象类的概念 Java使用类实例化对象来描述现实生活中的实体&…...

【4.vi编辑器使用(下)】

一、vi编辑器的光标移动 二、vi编辑器查找命令 1、命令&#xff1a;:/string 查找字符串 n&#xff1a;继续查找 N&#xff1a;反向继续查找 /^the 查找以the开头的行 /end 查找以 查找以 查找以结尾的行 三、vi编辑器替换命令 1、语法: : s[范围,范围]str1/str2[g] g表示全…...

【数据结构】探索树中的奇妙世界

专栏介绍&#xff1a; 哈喽大家好&#xff0c;我是野生的编程萌新&#xff0c;首先感谢大家的观看。数据结构的学习者大多有这样的想法&#xff1a;数据结构很重要&#xff0c;一定要学好&#xff0c;但数据结构比较抽象&#xff0c;有些算法理解起来很困难&#xff0c;学的很累…...

搭建YOLOv10环境 训练+推理+模型评估

文章目录 前言一、环境搭建必要环境1. 创建yolov10虚拟环境2. 下载pytorch (pytorch版本>1.8)3. 下载YOLOv10源码4. 安装所需要的依赖包 二、推理测试1. 将如下代码复制到ultralytics文件夹同级目录下并运行 即可得到推理结果2. 关键参数 三、训练及评估1. 数据结构介绍2. 配…...

c++(一)

c&#xff08;一&#xff09; C与C有什么区别命名空间使用 输入输出流引用指针和引用的区别定义拓展 函数重载例子测试函数重载原理 参数默认值什么是参数默认值注意 在c中如何引入c的库动态内存分配new、delete与malloc、free的区别&#xff1f; C与C有什么区别 <1>都是…...

java面试中高频问题----1

一、乐观锁和悲观锁定义、场景怎么判断用什么&#xff1f; 1.乐观锁&#xff1a; 定义&#xff1a;乐观锁假设大多数情况下&#xff0c;资源不会发生冲突。因此&#xff0c;允许多个线程同时访问资源。 场景&#xff1a;读操作多&#xff0c;写操作少&#xff0c;数据冲突概率…...

ABB 控制柜

1&#xff0c;主计算机&#xff1a;相当于电脑的主机&#xff0c;用于存放系统和数据&#xff0c;需要24V直流电才能工作。执行用户编写的程序&#xff0c;控制机器人进行响应的动作。主计算机有很多接口&#xff0c;比如与编程PC连接的服务网口、用于连接示教器的网口、连接轴…...

【错误记录】HarmonyOS 运行报错 ( Failure INSTALL_PARSE_FAILED_USESDK_ERROR )

文章目录 一、报错信息二、问题分析三、解决方案 一、报错信息 在 DevEco Studio 中 , 使用 远程设备 , 向 P40 Failure[INSTALL_PARSE_FAILED_USESDK_ERROR] compileSdkVersion and releaseType of the app do not match the apiVersion and releaseType on the device. 二、…...

使用C语言openssl库实现 RSA加密 和 消息验证

Q&#xff1a;什么是RSA&#xff1f; A&#xff1a;RSA&#xff08;Rivest-Shamir-Adleman&#xff09;是一种非对称加密算法&#xff0c;是最早的一种用于公开密钥加密和数字签名的算法。它使用一对公钥&#xff08;public key&#xff09;和私钥&#xff08;private key&…...

海外投放面试手册

海外投放面试手册 岗位职责&#xff1a; 负责Google 、Facebook、TikTok、Twitter等海外主流广告平台的自主投放操作及合作渠道沟通&#xff1b;负责海外合作渠道媒体的广告投放管理、媒体数据监测、效果分析、优化调整等工作&#xff1b; 3&#xff0e;了解海外各渠道&…...

第十三章 进程与线程

第十三章 进程与线程 程序与进程的概念 程序&#xff1a; 英文单词为Program&#xff0c;是指一系列有序指令的集合&#xff0c;使用编程语言所编写&#xff0c;用于实现一定的功能。 进程&#xff1a; 进程则是指启动后的程序&#xff0c;系统会为进程分配内存空间。 函数式…...

Flink面试整理-对Flink的高级特性如CEP(复杂事件处理)、状态后端选择和调优等有所了解

Apache Flink 提供了一系列高级特性,使其成为一个强大的实时数据处理框架,特别适用于复杂的数据处理场景。其中,复杂事件处理(CEP)、状态后端的选择和调优是其中重要的几个方面。 复杂事件处理(CEP) CEP 概念:CEP 是用于在数据流中识别复杂模式的技术。它允许用户指定事…...

算法:树状数组

文章目录 面试题 10.10. 数字流的秩327. 区间和的个数315. 计算右侧小于当前元素的个数 树状数组可以理解一种数的存储格式。 面试题 10.10. 数字流的秩 假设你正在读取一串整数。每隔一段时间&#xff0c;你希望能找出数字 x 的秩(小于或等于 x 的值的个数)。 请实现数据结构…...

Kafka SASL_SSL集群认证

背景 公司需要对kafka环境进行安全验证,目前考虑到的方案有Kerberos和SSL和SASL_SSL,最终考虑到安全和功能的丰富度,我们最终选择了SASL_SSL方案。处于知识积累的角度,记录一下kafka SASL_SSL安装部署的步骤。 机器规划 目前测试环境公搭建了三台kafka主机服务,现在将详…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...