python生成词云图
生成词云图的话需要先对数据进行分词处理 , 分词方法点击查看
import pandas as pd
from collections import Counter
from wordcloud import WordCloud
import matplotlib.pyplot as plt# 假设您已经按照之前的步骤处理了数据,并且处理后的数据保存在'comments_processed.csv'文件中
# 读取处理后的数据
df = pd.read_csv('comments_processed.csv', encoding='utf-8-sig')# 假设处理后的词汇存储在'connected_words'列中
words = ' '.join(df['connected_words'].values)
cleaned_stt = ' '.join(words.strip().split())# 使用 split() 方法将字符串分割为列表
word_list = cleaned_stt.split(' ')
word_counts = Counter(word_list)# 提取前20个高频词(如果词的数量少于20个,则提取所有)
top_words = word_counts.most_common(80)# 准备用于生成词云的数据
# 将高频词和它们的词频分开
top_words_list, top_words_freq = zip(*top_words)# 将词频列表转换为字典,用于wordcloud的权重参数
word_freq_dict = dict(top_words)
word_freq_dict1 = {'性能': 3351, '外观': 1086, '舒适': 806, '环保': 591, '智能': 433, '越野': 416, '坐在': 400, '前排': 389, '东西': 367, '拥挤': 360, '座椅': 338, '很大': 305, '储物': 304, '不错': 303, '车子': 277, '足够': 266, '腿部': 263, '舒服': 242, '设计': 238, '车内': 231}
word_freq_dict.update(word_freq_dict1)
print(word_freq_dict)
# 创建词云对象,并指定字体(确保支持中文)
wordcloud = WordCloud(width=1200, height=800, background_color='white',font_path=fr'fonts\xiawuxiheixinban.ttf' # 或者其他支持中文的字体文件路径).generate_from_frequencies(word_freq_dict)# 显示词云图
plt.figure(figsize=(8, 8), facecolor=None)
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.tight_layout(pad=0)plt.show()
相关文章:
python生成词云图
生成词云图的话需要先对数据进行分词处理 , 分词方法点击查看 import pandas as pd from collections import Counter from wordcloud import WordCloud import matplotlib.pyplot as plt# 假设您已经按照之前的步骤处理了数据,并且处理后的数据保存在comments_proc…...

【使用ChatGPT构建应用程序】应用程序开发概述:1. 管理秘钥、2. 数据安全、3. 与应用程序解耦、4. 注意提示语的注入攻击
文章目录 一. 首先注意的两个方面1. 管理API密钥1.1. 用户提供API密钥1.2. 你自己提供API密钥 2. 数据安全和数据隐私 二. 软件架构设计原则:与应用程序解耦三. 注意LLM提示语的注入攻击1. 分析输入和输出2. 监控和审计3. 其他要注意的注入情况 在了解了ChatGPT的文…...
【JavaScript脚本宇宙】不可或缺的Web开发工具:图表和可视化
图形化你的数据:六款顶级JavaScript库全接触 前言 在本文中,我们将深入探讨六个强大的JavaScript库,这些库被广泛应用于数据可视化和交互式图形展示。我们将了解每个库的概述、主要特性、使用示例以及使用场景,以帮助读者更全面…...
自然语言处理(NLP)中的迁移学习
Transfer Learning in NLP 迁移学习(Transfer Learning)无疑是目前深度学习中的新热点(相对而言)。在计算机视觉领域,它已经应用了一段时间,人们使用经过训练的模型从庞大的ImageNet数据集中学习特征&…...

PLC集成BL121PO网关优化智能电网的远程管理PLC转OPC UA协议
随着工业自动化技术的不断发展,智能电网等复杂系统对于设备之间高效通信的需求日益增加。PLC转OPC UA协议转换网关BL121PO作为一款领先的协议转换设备,通过其独特的设计和功能,为用户提供了高效、安全的PLC接入OPC UA的解决方案。 设备概述 …...

爬虫案例(读书网)
一.我们还是使用简单的bs4库和lxml,使用xpath: 导入下面的库: import requests from bs4 import BeautifulSoup from lxml import etree 我们可以看见它的div和每个书的div框架,这样会观察会快速提高我们的简单爬取能力。 二.实…...

Linux系统编程(五)多线程创建与退出
目录 一、基本知识点二、线程的编译三、 线程相关函数1. 线程的创建(1)整型的传入与接收(2)浮点数的传入与接收(3)字符串的传入与接收(4)结构体的传入与接收 2. 线程的退出3. 线程的…...

计算机毕业设计 | SpringBoot个人博客管理系统(附源码)
1,绪论 1.1 背景调研 在互联网飞速发展的今天,互联网已经成为人们快速获取、发布和传递信息的重要渠道,它在人们政治、经济、生活等各个方面发挥着重要的作用。互联网上发布信息主要是通过网站来实现的,获取信息也是要在互联网中…...

字母的大小写转换
自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 在Python中,字符串对象提供了lower()方法和upper()方法进行字母的大小写转换,即可用于将大写字母转换为小写字母或者将小写字…...
JTW结构
JTW(JSON Web Token)的结构 在这篇笔记中,我们将了解JTW(JSON Web Token)的结构。我们将看到JTW是如何创建的,令牌的各个部分是什么,以及您如何自己构建和构造JTW。您还将了解一些这种结构的含义,以及使用JTW进行授权时的一些结果优缺点。 基本上,JTW本质上就是一个…...

debian11安装留档@VirtualBox
因为debian12无法安装tpot,所以又把11重新安装一遍,以前的安装文档:安装Debian 11 留档-CSDN博客 下载光盘 华为云地址:https://repo.huaweicloud.com/debian-cd/11.0.0/amd64/iso-cd/ 使用了debian11 教育版,比较有…...

SpringBoot——整合Thymeleaf模板
目录 模板引擎 新建一个SpringBoot项目 pom.xml application.properties Book BookController bookList.html 编辑 项目总结 模板引擎 模板引擎是为了用户界面与业务数据分离而产生的,可以生成特定格式的页面在Java中,主要的模板引擎有JSP&…...

电商推荐系统+电影推荐系统【虚拟机镜像分享】
电商推荐系统电影推荐系统【虚拟机镜像分享】 所有组件部署好的镜像下载(在下面),仅供参考学习。(百度网盘,阿里云盘…) 博主通过学习尚硅谷电商推荐电影推荐项目,将部署好的虚拟机打包成ovf文…...

(函数)判断素数(C语言)
一、运行结果; 二、源代码; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>//声明素数判断函数; void prime(int number);int main() {//初始化变量值;int number 0;//获取用户输入的数据;printf(&quo…...

git 学习随笔
git 学习随笔 基本概念 git 对待数据类似快照流的形式而不是类似 cvs 那样的纪录文件随时间逐步积累的差异 git 中所有数据在存储钱都会计算校验和(hash) 三种状态:已提交(committed),已修改(modified),已暂存(staged)。 add…...

【因果推断python】1_因果关系初步1
目录 为什么需要关心因果关系? 回答不同类型的问题 当关联确实是因果时 为什么需要关心因果关系? 首先,您可能想知道:它对我有什么好处?下面的文字就将围绕“它”展开: 回答不同类型的问题 机器学习目…...

(函数)颠倒字符串顺序(C语言)
一、运行结果; 二、源代码; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h> # include <string.h>//声明颠倒函数; void reverse(char a[]) {//初始化变量值;int i, j;char t;//循环颠倒;for (i 0, j strl…...

自定义数据集上的3D目标检测:使用OpenPCDet训练CenterPointPillar模型
前言 在自动驾驶和机器人领域,3D目标检测是关键技术之一。它能够提供关于周围环境中物体的精确位置和尺寸信息。OpenPCDet是一个基于PyTorch的开源3D目标检测框架,支持多种3D检测网络。在本文中,我们将探讨如何使用OpenPCDet框架和CenterPoi…...

音乐传奇告别之作:《杰作》未解之谜❗❗
坂本龙一的《杰作》不仅是一部音乐会纪录电影,更是他赠予世界的一封深情告别信。 这部影片精心收录了这位音乐巨匠生前最后一场钢琴独奏音乐会的珍贵瞬间, 其中涵盖了《圣诞快乐,劳伦斯先生》、《末代皇帝》、《水》等二十首令人陶醉的经典…...

【Postman接口测试】第四节.Postman接口测试项目实战(上)
文章目录 前言一、项目介绍 1.1 项目界面功能介绍 1.2 项目测试接口介绍 1.3 项目测试接口流程二、HTTP协议三、接口测试中接口规范四、项目合同新增业务介绍 4.1 登录接口调试 4.1 登录接口自动关联 4.1 添加课程接口调试 4.1 上传合同…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...