AI大模型在测试中的深度应用与实践案例
文章目录
- 1. 示例项目背景
- 2. 环境准备
- 3. 代码实现
- 3.1. 自动生成测试用例
- 3.2. 自动化测试脚本
- 3.3. 性能测试
- 3.4. 结果分析
- 4. 进一步深入
- 4.1. 集成CI/CD管道
- 4.1.1 Jenkins示例
- 4.2. 详细的负载测试和性能监控
- 4.2.1 Locust示例
- 4.3. 测试结果分析与报告
- 5. 进一步集成和优化
- 5.1. 完善测试用例生成和管理
- 5.1.1 配置文件管理测试用例
- 5.2. 高级性能监控和分析
- 5.2.1 使用Grafana和Prometheus进行性能监控
- 5.2.2 使用Jaeger进行分布式跟踪
- 5.3. 持续反馈与改进
- 5.3.1 生成测试报告并通知
- 6. 总结
1. 示例项目背景
我们有一个简单的电商平台,主要功能包括用户注册、登录、商品搜索、加入购物车、下单和支付。我们将使用大模型来自动生成测试用例,并进行一些基本的测试结果分析。
2. 环境准备
首先,我们需要安装OpenAI的API客户端和其他必要的库:
pip install openai
pip install pytest
pip install requests
3. 代码实现
3.1. 自动生成测试用例
使用GPT-4自动生成测试用例,涵盖主要功能。
import openai# 设置API密钥
openai.api_key = "YOUR_API_KEY"def generate_test_cases(prompt):response = openai.Completion.create(engine="text-davinci-003",prompt=prompt,max_tokens=500)return response.choices[0].text.strip()# 定义测试用例生成的提示
prompt = """
Generate test cases for an e-commerce platform with the following features:
1. User Registration
2. User Login
3. Product Search
4. Add to Cart
5. Place Order
6. PaymentPlease provide detailed test cases including steps, expected results, and any necessary data.
"""# 生成测试用例
test_cases = generate_test_cases(prompt)
print(test_cases)
3.2. 自动化测试脚本
使用生成的测试用例编写自动化测试脚本。例如,我们使用pytest
框架进行功能测试。
import requests# 基础URL
BASE_URL = "http://example.com/api"def test_user_registration():url = f"{BASE_URL}/register"data = {"username": "testuser","email": "testuser@example.com","password": "password123"}response = requests.post(url, json=data)assert response.status_code == 201assert response.json()["message"] == "User registered successfully."def test_user_login():url = f"{BASE_URL}/login"data = {"email": "testuser@example.com","password": "password123"}response = requests.post(url, json=data)assert response.status_code == 200assert "token" in response.json()def test_product_search():url = f"{BASE_URL}/search"params = {"query": "laptop"}response = requests.get(url, params=params)assert response.status_code == 200assert len(response.json()["products"]) > 0def test_add_to_cart():# 假设我们已经有一个有效的用户tokentoken = "VALID_USER_TOKEN"url = f"{BASE_URL}/cart"headers = {"Authorization": f"Bearer {token}"}data = {"product_id": 1, "quantity": 1}response = requests.post(url, json=data, headers=headers)assert response.status_code == 200assert response.json()["message"] == "Product added to cart."def test_place_order():# 假设我们已经有一个有效的用户tokentoken = "VALID_USER_TOKEN"url = f"{BASE_URL}/order"headers = {"Authorization": f"Bearer {token}"}data = {"cart_id": 1, "payment_method": "credit_card"}response = requests.post(url, json=data, headers=headers)assert response.status_code == 200assert response.json()["message"] == "Order placed successfully."
3.3. 性能测试
使用大模型生成高并发用户请求,进行负载测试。
import threading
import timedef perform_load_test(url, headers, data, num_requests):def send_request():response = requests.post(url, json=data, headers=headers)print(response.status_code, response.json())threads = []for _ in range(num_requests):thread = threading.Thread(target=send_request)threads.append(thread)thread.start()for thread in threads:thread.join()# 示例负载测试
url = f"{BASE_URL}/order"
headers = {"Authorization": "Bearer VALID_USER_TOKEN"}
data = {"cart_id": 1, "payment_method": "credit_card"}# 模拟100个并发请求
perform_load_test(url, headers, data, num_requests=100)
3.4. 结果分析
利用大模型分析测试结果,自动生成测试报告。
def analyze_test_results(results):prompt = f"""
Analyze the following test results and provide a summary report including the number of successful tests, failures, and any recommendations for improvement:{results}
"""response = openai.Completion.create(engine="text-davinci-003",prompt=prompt,max_tokens=500)return response.choices[0].text.strip()# 示例测试结果
test_results = """
Test User Registration: Success
Test User Login: Success
Test Product Search: Success
Test Add to Cart: Failure (Product not found)
Test Place Order: Success
"""# 分析测试结果
report = analyze_test_results(test_results)
print(report)
4. 进一步深入
为了使大模型在实际项目中的测试应用更加完整,我们可以进一步探讨如何将上述代码整合到一个持续集成(CI)/持续交付(CD)管道中,以及如何处理和报告测试结果。这将确保我们的测试过程高效、自动化,并且易于维护。
4.1. 集成CI/CD管道
我们可以使用诸如Jenkins、GitLab CI、GitHub Actions等CI/CD工具,将测试流程自动化。这些工具能够在代码提交时自动运行测试,并生成报告。
4.1.1 Jenkins示例
假设我们使用Jenkins来实现CI/CD。以下是一个示例Jenkinsfile配置:
pipeline {agent anystages {stage('Checkout') {steps {git 'https://github.com/your-repo/your-project.git'}}stage('Install dependencies') {steps {sh 'pip install -r requirements.txt'}}stage('Run tests') {steps {sh 'pytest --junitxml=report.xml'}}stage('Publish test results') {steps {junit 'report.xml'}}stage('Load testing') {steps {sh 'python load_test.py'}}stage('Analyze results') {steps {script {def results = readFile('results.txt')def analysis = analyze_test_results(results)echo analysis}}}}post {always {archiveArtifacts artifacts: 'report.xml', allowEmptyArchive: truejunit 'report.xml'}}
}
4.2. 详细的负载测试和性能监控
为了更全面的性能测试,我们可以集成如Locust、JMeter等工具。
4.2.1 Locust示例
Locust是一个易于使用的负载测试工具,可以用Python编写用户行为脚本。
安装Locust:
pip install locust
编写Locust脚本(locustfile.py
):
from locust import HttpUser, task, betweenclass EcommerceUser(HttpUser):wait_time = between(1, 2.5)@taskdef login(self):self.client.post("/api/login", json={"email": "testuser@example.com", "password": "password123"})@taskdef search_product(self):self.client.get("/api/search?query=laptop")@taskdef add_to_cart(self):self.client.post("/api/cart", json={"product_id": 1, "quantity": 1}, headers={"Authorization": "Bearer VALID_USER_TOKEN"})@taskdef place_order(self):self.client.post("/api/order", json={"cart_id": 1, "payment_method": "credit_card"}, headers={"Authorization": "Bearer VALID_USER_TOKEN"})
运行Locust:
locust -f locustfile.py --host=http://example.com
4.3. 测试结果分析与报告
通过分析测试结果生成详细报告,并提供可操作的建议。可以使用Python脚本实现结果分析,并利用大模型生成报告。
import openaidef analyze_test_results_detailed(results):prompt = f"""
Analyze the following test results in detail, provide a summary report including the number of successful tests, failures, performance metrics, and any recommendations for improvement:{results}
"""response = openai.Completion.create(engine="text-davinci-003",prompt=prompt,max_tokens=1000)return response.choices[0].text.strip()# 示例测试结果(假设我们从文件读取)
with open('results.txt', 'r') as file:test_results = file.read()# 分析测试结果
detailed_report = analyze_test_results_detailed(test_results)
print(detailed_report)# 将报告写入文件
with open('detailed_report.txt', 'w') as file:file.write(detailed_report)
5. 进一步集成和优化
为了使上述测试流程更高效和全面,我们可以进一步优化和扩展,包括:
- 完善测试用例生成和管理
- 高级性能监控和分析
- 持续反馈与改进
5.1. 完善测试用例生成和管理
我们可以利用配置文件和版本控制系统来管理测试用例,确保测试用例的可维护性和可追溯性。
5.1.1 配置文件管理测试用例
我们可以使用YAML或JSON文件来管理测试用例,并通过脚本动态生成测试代码。
示例YAML配置文件(test_cases.yaml
):
test_cases:- name: test_user_registrationendpoint: "/api/register"method: "POST"data:username: "testuser"email: "testuser@example.com"password: "password123"expected_status: 201expected_response:message: "User registered successfully."- name: test_user_loginendpoint: "/api/login"method: "POST"data:email: "testuser@example.com"password: "password123"expected_status: 200expected_response_contains: ["token"]- name: test_product_searchendpoint: "/api/search"method: "GET"params:query: "laptop"expected_status: 200expected_response_contains: ["products"]# 更多测试用例...
动态生成测试代码的Python脚本:
import yaml
import requests# 读取测试用例配置文件
with open('test_cases.yaml', 'r') as file:test_cases = yaml.safe_load(file)# 动态生成测试函数
for case in test_cases['test_cases']:def test_function():if case['method'] == 'POST':response = requests.post(f"http://example.com{case['endpoint']}", json=case.get('data', {}))elif case['method'] == 'GET':response = requests.get(f"http://example.com{case['endpoint']}", params=case.get('params', {}))assert response.status_code == case['expected_status']if 'expected_response' in case:assert response.json() == case['expected_response']if 'expected_response_contains' in case:for item in case['expected_response_contains']:assert item in response.json()# 为每个测试用例创建独立的测试函数globals()[case['name']] = test_function
5.2. 高级性能监控和分析
除了基础的负载测试,我们可以使用更多高级工具进行性能监控和分析,如Grafana、Prometheus、Jaeger等。
5.2.1 使用Grafana和Prometheus进行性能监控
Grafana和Prometheus是一对强大的开源监控工具,可以实时监控和分析系统性能。
- Prometheus配置:采集应用性能数据。
- Grafana配置:展示实时性能数据仪表盘。
Prometheus配置文件(prometheus.yml
):
global:scrape_interval: 15sscrape_configs:- job_name: 'ecommerce_app'static_configs:- targets: ['localhost:9090']
在应用代码中集成Prometheus客户端(例如使用prometheus_client
库):
from prometheus_client import start_http_server, Summary# 启动Prometheus HTTP服务器
start_http_server(8000)# 创建一个摘要来跟踪处理时间
REQUEST_TIME = Summary('request_processing_seconds', 'Time spent processing request')@REQUEST_TIME.time()
def process_request():# 模拟请求处理time.sleep(2)
Grafana仪表盘配置:
- 安装Grafana并配置数据源为Prometheus。
- 创建仪表盘以可视化系统的实时性能数据。
5.2.2 使用Jaeger进行分布式跟踪
Jaeger是一种开源的端到端分布式跟踪工具,用于监控和排查微服务架构中的交易。
- 部署Jaeger:使用Docker或Kubernetes部署Jaeger。
- 集成Jaeger客户端:在应用代码中添加分布式跟踪代码。
示例代码:
from jaeger_client import Configdef init_tracer(service_name='ecommerce_service'):config = Config(config={'sampler': {'type': 'const', 'param': 1},'logging': True,},service_name=service_name,)return config.initialize_tracer()tracer = init_tracer()def some_function():with tracer.start_span('some_function') as span:span.log_kv({'event': 'function_start'})# 模拟处理time.sleep(2)span.log_kv({'event': 'function_end'})
5.3. 持续反馈与改进
通过自动化的反馈机制,不断优化和改进测试流程。
5.3.1 生成测试报告并通知
通过邮件、Slack等方式通知团队测试结果和改进建议。
示例代码:
import smtplib
from email.mime.text import MIMETextdef send_email_report(subject, body):msg = MIMEText(body)msg['Subject'] = subjectmsg['From'] = 'your_email@example.com'msg['To'] = 'team@example.com'with smtplib.SMTP('smtp.example.com') as server:server.login('your_email@example.com', 'your_password')server.send_message(msg)# 示例调用
report = "Test Report: All tests passed."
send_email_report("Daily Test Report", report)
通过上述步骤,进一步集成和优化大模型在测试中的应用,可以实现更加全面、高效、智能的测试流程,确保系统的稳定性和可靠性。不断迭代和改进测试流程,将使产品在实际应用中更加稳定和高效。
6. 总结
通过上述示例,我们展示了如何利用大模型生成测试用例、编写自动化测试脚本、进行性能测试和结果分析。在实际项目中,使用大模型可以显著提高测试的自动化水平和效率,确保产品的高质量交付。
通过上述步骤,我们可以实现:
- 自动生成测试用例:利用大模型生成详细的测试用例,涵盖主要功能。
- 自动化测试执行:使用
pytest
和CI/CD工具自动执行测试。 - 性能测试:利用Locust等工具进行负载测试,模拟高并发用户请求。
- 测试结果分析:通过大模型分析测试结果,生成详细报告并提供改进建议。
这些步骤不仅提高了测试的自动化程度和效率,还确保了测试覆盖的全面性和结果分析的深度,为产品的高质量交付提供了有力保障。在实际项目中,通过持续集成和持续交付,可以保持测试过程的持续改进和优化。
欢迎点赞|关注|收藏|评论,您的肯定是我创作的动力 |
相关文章:

AI大模型在测试中的深度应用与实践案例
文章目录 1. 示例项目背景2. 环境准备3. 代码实现3.1. 自动生成测试用例3.2. 自动化测试脚本3.3. 性能测试3.4. 结果分析 4. 进一步深入4.1. 集成CI/CD管道4.1.1 Jenkins示例 4.2. 详细的负载测试和性能监控4.2.1 Locust示例 4.3. 测试结果分析与报告 5. 进一步集成和优化5.1. …...
OOP一元多项式类(运算符重载)
题目描述 一元多项式按照升幂表示为: Pn(x) = p0+ p1x + p2x2+ … +pnxn。(n>=0) 构建一元多项式类保存多项式中每项的系数和指数。并重载输入输出运算符,完成多项式的输入以及输出;重载加法,减法,乘法运算符,完成多项式的运算。 输入 测试数据数 对于每组测试数…...

Docker compose 的方式一键部署夜莺
官方安装文档:https://flashcat.cloud/docs/content/flashcat-monitor/nightingale-v7/install/docker-compose/ 介绍:夜莺监控是一款开源云原生观测分析工具,采用 All-in-One 的设计理念,集数据采集、可视化、监控告警、数据分析…...

解锁私域流量的奥秘:构建独特的私域生态
大家好,我是来自一家深耕私域电商领域的技术创新公司,担任资深产品经理一职,已积累了多年的行业经验和独到见解。今天,我想和大家共同探讨私域流量的核心内涵,以及它为何在当前的商业环境中变得如此重要。在私域运营中…...

在CentOS系统上安装Oracle JDK(华为镜像)
在CentOS系统上安装Oracle JDK(华为镜像) 先爱上自己,再遇见爱情,不庸人自扰,不沉溺过去,不为自己的敏感而患得患失,不为别人的过失而任性,这才是终身浪漫的开始。 https://repo.huaweicloud.com/java/jdk …...

7 步解决Android Studio模拟器切换中文输入
详细步骤传送地址:Android Studio 模拟器切换中文输入 目录 01 问题概述 02 模拟器的调试 01 问题概述 大家在使用Android Studio 软件进行项目演示时总会遇到一些输入框需要输入中文汉字的情况,由于AS自带的模拟器基本都是英文,这时就有同…...

如何搭建B2B2C商城系统?开发语言、功能扩展、优势分析
如今,越来越多的企业意识到单靠第三方电商平台不足以快速实现品牌曝光和销售增加,相反还有诸多限制。 因此,搭建一个B2B2C商城也就成为企业发展业务的首选,既可以满足自营和商家入驻的需求,功能操作又灵活,…...
Rust的高效易用日志库—tklog
很多人习惯于python,go等语言基础工具库的简单易用;在使用rust时,可能感觉比较麻烦,类似日志库这样的基础性工具库。tklog提供用法上,非常类似python等Logger的日志库用法,用法简洁;基于rust的高…...

LabVIEW调用外部DLL(动态链接库)
LabVIEW调用外部DLL(动态链接库) LabVIEW调用外部DLL(动态链接库)可以扩展其功能,使用外部库实现复杂计算、硬件控制等任务。通过调用节点(Call Library Function Node)配置DLL路径、函数名称和…...
Python图形界面(GUI)Tkinter笔记(十六):Radiobutton选项功能按钮(单选按钮)
在tkinter库中,选项功能按钮Radiobutton是一个常用的控件,用于从多个选项中选择一个,从而实现相关的交互功能。 其余笔记:【Python图形界面(GUI)Tkinter笔记(总目录)】 【一】书写:tkinter.Radiobutton(父窗口对象,参数1,参数2,...) 【二】Radiobutton控件常用参数…...

静态路由原理与配置
文章目录 路由器的工作原理路由根据路由表转发数据 路由表的形成路由表路由表的形成 静态路由和默认路由静态路由默认路由 路由器转发数据包的封装过程源目地址变化 交换与路由对比路由工作在网络层交换工作在数据链路层 静态路由和默认路由的配置 路由器的工作原理 路由 路由…...

Android 开机动画的启动过程BootAnimation(基于Android10.0.0-r41)
文章目录 Android 开机动画的启动过程BootAnimation(基于Android10.0.0-r41)1.开机动画的启动过程概述2.为什么设置了属性之后就会播放? Android 开机动画的启动过程BootAnimation(基于Android10.0.0-r41) 1.开机动画的启动过程概述 下面就是BootAnimation的重要部…...

Redis 中的 Zset 数据结构详解
目录 用法 1. 增 2. 删 3. 查 4. 交,并 编码方式 应用场景 Redis 中的 Zset(有序集合)是一种将元素按照分数进行排序的数据结构。与上篇写的SetRedis 中的 Set 数据结构详解不同,Zset 中的每个元素都关联一个浮点数类型的…...

Python网页处理与爬虫实战:使用Requests库进行网页数据抓取
✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…...

HOW - vscode 使用指南
目录 一、基本介绍1. 安装 VS Code2. 界面介绍3. 扩展和插件4. 设置和自定义 二、常用界面功能和快捷操作(重点)常用界面功能快捷操作 三、资源和支持 Visual Studio Code(VS Code)是一款由微软开发的免费、开源的代码编辑器&…...

刚刚!《国家科学技术奖励条例》迎来最新修订
【SciencePub学术】《国务院关于修改〈国家科学技术奖励条例〉的决定》已经于2024年5月11日国务院第32次常务会议通过,现予公布: 国务院决定对《国家科学技术奖励条例》作如下修改: 一、将第二条修改为:“国家设立下列国家科学技术…...

MySQL -- SQL笔试题相关
1.银行代缴花费bank_bill 字段名描述serno流水号date交易日期accno账号name姓名amount金额brno缴费网点 serno: 一个 BIGINT UNSIGNED 类型的列,作为主键,且不为空。该列是自动增量的,每次插入新行时,都会自动递增生成一个唯一的…...

VB6 MQTT为什么在物联网应用中使用 MQTT 而不是 HTTP?
有需要VBA,VB6,VB.NET等方面的MQTT的可以找我 一、MQTT简介 MQTT被广泛用于物联网(IoT:Internet of Things)领域,其中大量的设备需要进行实时通信和数据交换。它采用了一种发布/订阅(publish/subscribe)模型,其中消息的发送者(发布者&#…...
软设之希尔排序
假设有n个元素,先取一个小于n的整数d1作为一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组中进行直接插入排序;然后,取第二个增量d2<d1重复上诉的分组和排序,直到所取得增量dt1&#…...

WPF Binding对象
在WinForm中,我们要想对控件赋值,需要在后台代码中拿到控件对象进行操作,这种赋值形式,从根本上是无法实现界面与逻辑分离的。 在WPF中,微软引入了Binding对象,通过Binding,我们可以直接将控件与…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...