当前位置: 首页 > news >正文

图形学初识--屏幕空间变换

文章目录

  • 前言
  • 正文
    • 为什么需要屏幕空间变换?
    • 什么是屏幕空间变换?
    • 屏幕空间变换矩阵如何推导?
      • 问题描述
      • 步骤描述
  • 结尾:喜欢的小伙伴点点关注+赞哦!

前言

前面章节主要讲解了视图变换和投影变换,此时距离在屏幕空间显示也就只差一步之遥了,只需要将NDC坐标转换为屏幕空间坐标即可!有了前面一些章节的学习,相信大家对于本章节的学习还是很容易的!

正文

为什么需要屏幕空间变换?

因为经过了视图变换和投影变换后,咱们已经将所有的顶点坐标转换成了NDC坐标,也就是x/y/z的范围都在 [ − 1 , 1 ] [-1,1] [1,1] 的坐标,但是正常咱们得电脑屏幕的XY坐标范围一般都是 [ 0 , w i d t h − 1 ] × [ 0 , h e i g h t − 1 ] [0,width-1] \times [0, height-1] [0,width1]×[0,height1] ,所以咱们需要屏幕空间变换!

什么是屏幕空间变换?

本质上和之前的视图变换、投影变换并无不同,就是一个矩阵罢了!

屏幕空间变换矩阵如何推导?

问题描述

将x坐标由 [ − 1 , 1 ] [-1,1] [1,1] 变换为 $ [0,screen_width - 1]$ ,将y坐标由 [ − 1 , 1 ] [-1,1] [1,1] 变换为 $ [0,screen_height - 1]$ ,将z坐标由 [ − 1 , 1 ] [-1,1] [1,1] 变换为 $ [0,1]$​.

如下图所示:

在这里插入图片描述

步骤描述

步骤1:将xyz坐标变换到 [ 0 , 1 ] [0,1] [0,1] 的范围

步骤2:将xy坐标缩放至 [ 0 , s c r e e n w i d t h − 1 ] × [ 0 , s c r e e n h e i g h t − 1 ] [0, screen_width - 1] \times [0, screen_height - 1] [0,screenwidth1]×[0,screenheight1]

咱们先思考下步骤1如何实现呢?当前的xyz坐标范围为 [ − 1 , 1 ] [-1,1] [1,1] ,目标的坐标范围为 [ 0 , 1 ] [0,1] [0,1] ,如何做呢?

这时候其实咱们分两步:

第一步:将 [ − 1 , 1 ] [-1,1] [1,1] 缩放至 [ − 0.5 , 0.5 ] [-0.5,0.5] [0.5,0.5] 的范围。

第二步:将 [ − 0.5 , 0.5 ] [-0.5,0.5] [0.5,0.5] 沿着对应轴轴方向移动0.5单位即可。

于是咱们分别得到缩放矩阵和平移矩阵如下:
S = [ 0.5 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 1 ] S = \begin{bmatrix} 0.5&0&0&0\\ 0&0.5&0&0\\ 0&0&0.5&0\\ 0&0&0&1\\ \end{bmatrix} S= 0.500000.500000.500001

T = [ 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0 0 0 1 ] T = \begin{bmatrix} 0&0&0&0.5\\ 0&0&0&0.5\\ 0&0&0&0.5\\ 0&0&0&1\\ \end{bmatrix} T= 0000000000000.50.50.51

于是咱们只需要将两者相乘,即可获得相应的结果:
M 1 = T ∗ S = [ 0.5 0 0 0.5 0 0.5 0 0.5 0 0 0.5 0.5 0 0 0 1 ] M_1 = T * S = \begin{bmatrix} 0.5&0&0&0.5\\ 0&0.5&0&0.5\\ 0&0&0.5&0.5\\ 0&0&0&1\\ \end{bmatrix} M1=TS= 0.500000.500000.500.50.50.51

然后咱们思考下步骤二,当前的xy坐标范围为: [ 0 , 1 ] [0,1] [0,1] ,目标范围为 $[0,screen_width-1] 和 [0,screen_height-1] $

这个问题也就只是个xy轴的缩放问题而已,很容易得到以下缩放矩阵:
M 2 = [ s c r e e n _ w i d t h 0 0 0 0 s c r e e n _ h e i g h t 0 0 0 0 1 0 0 0 0 1 ] M_2 = \begin{bmatrix} screen\_width&0&0&0\\ 0&screen\_height&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{bmatrix} M2= screen_width0000screen_height0000100001

然后咱们将步骤一的结果和步骤二的结果结合起来即可得到最终的屏幕空间变换矩阵,如下:
M s c r e e n = M 2 ∗ M 1 = M 2 = [ 0.5 ∗ s c r e e n _ w i d t h 0 0 0.5 ∗ s c r e e n _ w i d t h 0 0.5 ∗ s c r e e n _ h e i g h t 0 0.5 ∗ s c r e e n _ h e i g h t 0 0 0.5 0.5 0 0 0 1 ] M_{screen}= M_2 * M_1 = M_2 = \begin{bmatrix} 0.5*screen\_width&0&0&0.5*screen\_width\\ 0&0.5*screen\_height&0&0.5*screen\_height\\ 0&0&0.5&0.5\\ 0&0&0&1\\ \end{bmatrix} Mscreen=M2M1=M2= 0.5screen_width00000.5screen_height00000.500.5screen_width0.5screen_height0.51

于是大功告成啦!咱们成功的将NDC坐标转换成了屏幕空间坐标!

结尾:喜欢的小伙伴点点关注+赞哦!

你们的点赞就是我创作的最大动力!希望对各位小伙伴能够有所帮助哦,永远在学习的道路上伴你而行, 我是航火火,火一般的男人!

相关文章:

图形学初识--屏幕空间变换

文章目录 前言正文为什么需要屏幕空间变换?什么是屏幕空间变换?屏幕空间变换矩阵如何推导?问题描述步骤描述 结尾:喜欢的小伙伴点点关注赞哦! 前言 前面章节主要讲解了视图变换和投影变换,此时距离在屏幕空间显示也就…...

爬楼梯 - LeetCode 热题 81

大家好!我是曾续缘😇 今天是《LeetCode 热题 100》系列 发车第 81 天 动态规划第 1 题 ❤️点赞 👍 收藏 ⭐再看,养成习惯 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法…...

详解 Spark 核心编程之 RDD 分区器

一、RDD 分区器简介 Spark 分区器的父类是 Partitioner 抽象类分区器直接决定了 RDD 中分区的个数、RDD 中每条数据经过 Shuffle 后进入哪个分区,进而决定了 Reduce 的个数只有 Key-Value 类型的 RDD 才有分区器,非 Key-Value 类型的 RDD 分区的值是 No…...

Selenium番外篇文本查找、元素高亮、截图、无头运行

Selenium根据文本查找元素 ​ python def find_element_with_text(self, loc, attribute, text):try:WebDriverWait(self.driver, 5).until(EC.all_of(EC.text_to_be_present_in_element_attribute(loc, attribute, text)))element self.driver.find_element(*loc)if isinsta…...

Java 22的FFM API,比起Java 21的虚拟线程

哪个对Java未来的发展影响更大?两个 Java 版本中的重要特性:Java 21 的虚拟线程和 Java 22 的 FFM API。我这里有一套编程入门教程,不仅包含了详细的视频讲解,项目实战。如果你渴望学习编程,不妨点个关注,给…...

用c语言实现简易三子棋

本篇适用于C语言初学者。 目录 完整代码&#xff1a; 分步介绍&#xff1a; 声明&#xff1a; 代码主体部分&#xff1a; 模块功能实现&#xff1a; 完整代码&#xff1a; #include<stdio.h> #include <stdlib.h> #include <time.h>#define ROW 3 #d…...

2024年华为OD机试真题-执行时长-Python-OD统一考试(C卷D卷)

2024年OD统一考试(D卷)完整题库:华为OD机试2024年最新题库(Python、JAVA、C++合集) 题目描述: 为了充分发挥GPU算力,需要尽可能多的将任务交给GPU执行,现在有一个任务数组,数组元素表示在这1秒内新增的任务个数且每秒都有新增任务,假设GPU最多一次执行n个任务,一次执…...

对未知程序所创建的 PDF 文档的折叠书签层级全展开导致丢签的一种解决方法

对需要经常查阅、或连续长时间阅读的带有折叠书签的 PDF 文档展开书签层级&#xff0c;提高阅览导航快捷是非常有必要的。 下面是两种常用书签层级全展开的方法 1、 FreePic2Pdf 1 - 2 - 3 - 4 - 5 - 6&#xff0c;先提取后回挂 2、PdgCntEditor 载入后&#xff0c;直接保存…...

计算机系统结构之FORK和JOIN

程序语言中用FORK语句派生并行任务&#xff0c;用JOIN语句对多个并发任务汇合。 FORK语句的形式为FORK m&#xff0c;其中m为新领程开始的标号。 JOIN语句的形式为JOIN n&#xff0c;其中n为并发进程的个数。 例1&#xff1a;给定算术表达式ZEA*B*C/DF经并行编译得到如下程序…...

Yocto - virtual/kernel介绍

在 Yocto 项目中&#xff0c;"virtual/kernel "是一个虚拟目标&#xff0c;作为 Linux 内核的抽象层。它是一种以灵活方式指定内核依赖关系的方法&#xff0c;允许实际的内核配方由特定构建中使用的机器配置和层决定。 下面是关于 "virtual/kerne"的含义和…...

如何在 DigitalOcean 云服务器上创建自定义品牌名称服务器

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 介绍 对于托管提供商或转售商来说&#xff0c;拥有自定义的名称服务器可以为客户提供更专业的外观。这消除了要求客户将其域名指向另一…...

心链6----开发主页以及后端数据插入(多线程并发)定时任务

心链 — 伙伴匹配系统 开发主页 信息搜索页修改 主页开发&#xff08;直接list用户&#xff09; 在后端controller层编写接口去实现显示推荐页面的功能 /*** 推荐页面* param request* return*/GetMapping("/recommend")public BaseResponse<List<User>&…...

【Linux】日志管理

一、日志进程 1、处理日志的进程 rsyslogd&#xff1a;系统专职日志程序 观察rsyslogd程序&#xff1a; ps aux | grep rsyslogd 2、常见的日志文件 1、系统主日志文件: /var/log/messages 动态查看日志文件尾部&#xff1a; tail -f /var/log/messages 2、安全…...

AI 绘画爆火背后:扩散模型原理及实现

节前&#xff0c;我们星球组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、参加社招和校招面试的同学。 针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 合集&#x…...

详解智慧互联网医院系统源码:开发医院小程序教学

本篇文章&#xff0c;笔者将详细介绍智慧互联网医院系统的源码结构&#xff0c;并提供开发医院小程序的详细教学。 一、智慧互联网医院系统概述 智慧互联网医院系统涵盖了预约挂号、在线咨询、电子病历、药品管理等多个模块。 二、系统源码结构解析 智慧互联网医院系统的源码…...

【技术实操】银河高级服务器操作系统实例分享,数据库日志文件属主不对问题分析

1. 问题现象描述 2023 年 06 月 30 日在迁移数据库过程中&#xff0c;遇到数据库 crash 的缺陷&#xff0c;原因如下&#xff1a;在数据库启动时候生成的一组临时文件中&#xff0c;有 owner 为 root 的文件&#xff0c; 文件权限默认为 640&#xff0c; 当数据库需要使用的时…...

函数的创建和调用

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 提到函数&#xff0c;大家会想到数学函数吧&#xff0c;函数是数学最重要的一个模块&#xff0c;贯穿整个数学学习过程。在Python中&#xff0c;函数…...

数模混合芯片设计中的修调技术是什么?

一、修调目的 数模混合芯片需要修调技术主要是因为以下几个原因&#xff1a; 工艺偏差&#xff08;Process Variations&#xff09;&#xff1a; 半导体制造过程中存在不可避免的工艺偏差&#xff0c;如晶体管尺寸、阈值电压、电阻和电容值等&#xff0c;这些参数的实际值与…...

MySQL 自定义函数(实验报告)

一、实验名称&#xff1a; 自定义函数 二、实验日期&#xff1a; 2024年 6 月 1 日 三、实验目的&#xff1a; 掌握MySQL自定义函数的创建及调用&#xff1b; 四、实验用的仪器和材料&#xff1a; 硬件&#xff1a;PC电脑一台&#xff1b; 配置&#xff1a;内存&#…...

一次职业院校漏洞挖掘

这个是之前挖掘到的漏洞&#xff0c;目前网站进行重构做了全新的改版&#xff0c;但是这个漏洞特别经典&#xff0c;拿出来进行分享。看到src上面的很多敏感信息泄露&#xff0c;所以自己也想找一个敏感信息泄露&#xff0c;官网如图&#xff1a; 发现在下面有一个数字校园入口…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...