Feature Manipulation for DDPM based Change Detection
基于去噪扩散模型的特征操作变化检测
文章提出了一种基于去噪扩散概率模型(DDPM)的特征操作变化检测方法。变化检测是计算机视觉中的经典任务,涉及分析不同时间捕获的图像对,以识别场景中的重要变化。现有基于扩散模型的方法主要关注提取特征图,而本文的方法专注于操作扩散模型提取的特征图,使其在语义上更有用。文章提出了两种方法:特征注意力(Feature Attention)和流对齐融合(Flow Dual-Alignment Fusion, FDAF)。在LEVIR-CD数据集上,带有特征注意力的模型实现了最先进的F1分数(90.18)和IoU(83.86)。
文章贡献:
提出了两种新的特征操作机制:特征注意力和FDAF,以增强模型的性能。
展示了扩散模型在遥感变化检测中的适用性和潜在好处。
通过实验验证了提出方法的有效性,并在LEVIR-CD数据集上取得了先进的性能。
方法

- 特征注意力(Feature Attention):通过学习双特征图之间的相互关系来增强变化检测的效果。
- 流对齐融合(FDAF):旨在通过图像配准和融合机制来减少环境噪声的影响,提高变化检测的清晰度。
在进行变化检测时,算法需要能够准确识别出图像中真实有意义的变化,比如建筑物的新增或土地使用的变化,同时忽略掉由环境因素如光照、天气、季节变化等引起的图像差异,这些因素会在图像中引入噪声。

精度

结论
特征注意力机制可以显著提高变化检测的性能,尤其是在捕捉和利用双时相图像序列之间的时间相关性方面。
FDAF方法虽然理论上旨在通过对齐和融合机制减少噪声,但在实验中显示出了性能下降的问题,可能是因为它在过滤环境噪声的同时,模糊了比较图像之间的关键特征差异。
未来的研究需要改进FDAF机制,确保在不损害目标特征差异的完整性的情况下,有效去除环境噪声。
本文提出的研究框架为变化检测技术的发展提供了新的方向,通过迭代改进,有望广泛应用于变化检测领域。
研究背景:
-
将伪变化视为噪声
在进行变化检测时,算法需要能够准确识别出图像中真实有意义的变化,比如建筑物的新增或土地使用的变化,同时忽略掉由环境因素如光照、天气、季节变化等引起的图像差异,这些因素会在图像中引入噪声。 -
在变化检测任务中,区分这两种类型的“变化”是至关重要的,因为:
-
有意义的变化:这些变化通常与人类活动、自然现象或其他重要的环境变化有关,对于环境监测、城市规划、灾害评估等应用领域具有重要价值。
-
环境因素引起的变化:这些变化通常是临时性的或周期性的,比如季节性的植被变化、天气条件变化(如云层覆盖、降水)或光照变化等,它们可能在图像中产生误导性的信号,但并不一定表示实际的物理变化。
-
-
文章中强调的挑战包括:
- 噪声过滤:如何从遥感图像中过滤掉由环境因素引入的噪声,以便更准确地识别出有意义的变化。
- 特征提取:如何设计算法以突出与实际变化相关的图像特征,同时抑制与环境变化相关的特征。
- 准确性与鲁棒性:提高变化检测算法的准确性和鲁棒性,确保在不同环境条件下都能稳定地检测出有意义的变化。
为了应对这些挑战,文章提出了基于DDPM的特征操作方法,通过特征注意力和FDAF来增强模型对变化的识别能力,从而在复杂的环境条件下实现更准确的变化检测。
相关文章:
Feature Manipulation for DDPM based Change Detection
基于去噪扩散模型的特征操作变化检测 文章提出了一种基于去噪扩散概率模型(DDPM)的特征操作变化检测方法。变化检测是计算机视觉中的经典任务,涉及分析不同时间捕获的图像对,以识别场景中的重要变化。现有基于扩散模型的方法主要…...
第十三届蓝桥杯国赛大学B组填空题(c++)
A.2022 动态规划 AC; #include<iostream> #define int long long using namespace std; int dp[2050][15]; //dp[i][j]:把数字i分解为j个不同的数的方法数 signed main(){dp[0][0]1;for(int i1;i<2022;i){for(int j1;j<10;j){//一种是已经分成j个数,这时只需每一个…...
conda源不能用了的问题
conda旧没用了,不知道什么原因,安装源出问题,报如下错: Loading channels: failedUnavailableInvalidChannel: HTTP 404 NOT FOUND for channel anaconda/pkgs/main <https://mirrors.aliyun.com/anaconda/pkgs/main>The c…...
【C#】自定义List排序规则的两种方式
目录 1.系统排序原理 2.方式一:调用接口并重写 3.方式二:传排序规则函数做参数 1.系统排序原理 当我们对一个List<int>类型的数组如list1排序时,一个轻松的list1.sort();帮我们解决了问题 但是在实际应用过程中,往往我们…...
ANAH数据集- 大模型幻觉细粒度评估工具
大型语言模型(LLMs)在各种自然语言处理任务中取得了显著的性能提升。然而,它们在回答用户问题时仍面临一个令人担忧的问题,即幻觉,它们会产生听起来合理但不符合事实或无意义的信息,尤其是当问题需要大量知…...
AI前沿技术探索:智能化浪潮下的创新与应用
一、引言 随着科技的不断进步,人工智能(AI)已成为推动社会发展的重要力量。从自动驾驶汽车到智能医疗诊断,从智能家居到虚拟助手,AI技术正逐渐渗透到我们生活的方方面面。本文旨在探讨AI的前沿技术、创新应用以及未来…...
JVM类加载过程
在Java虚拟机规范中,把描述类的数据从class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的java.lang.Class对象,这个过程被称作类加载过程。一个类在整个虚拟机周期内会经历如下图的阶段&…...
如何安装ansible
ansible安装 1、 准备环境----关闭防护墙和selinux 一般用ansible不会少于10台以上 环境: 主机:4台 一个控制节点 3个被控制节点 解析:本地互相解析(所有机器) # vim /etc/hosts 192.168.1.10 ansible-web1 192.168.1.11 ansible-web2 192.168.1.12…...
html+CSS+js部分基础运用11
一、改变新闻网页中的字号 1、设计如图1-1所示的界面,要求当网络访问者选择字号中的【大、中、小】时能实现页面字号大小变化,选择“中”时,页面效果如图1所示。 图1 单击前初始状态页面 图2 单击“中”链接后页面 2、div中内容如下&#x…...
6,串口编程———通过串口助手发送数据,控制led亮灭
//功能:串口助手每次发送数据格式:0000& // 第二个字节控制LED1亮灭 // 第三个字节控制LED2亮灭 // 第四个字节控制LED3亮灭 // 第无个字节控制LED4亮灭 //要求:代码能够一直运行,能够接收多字节数据 上节讲了串口的基本…...
【java】【python】leetcode刷题记录--栈与队列
232 用栈实现队列 题目描述 两个栈模拟队列的思路是利用栈(后进先出结构)的特性来实现队列(先进先出结构)的行为。这种方法依赖于两个栈来逆转元素的入队和出队顺序,从而实现队列的功能。 入队操作(使用s…...
java并发常见问题
1.死锁:当两个或多个线程无限期地等待对方释放锁时发生死锁。为了避免这种情况,你应该尽量减少锁定资源的时间,按顺序获取锁,并使用定时锁尝试。 2.竞态条件:当程序的行为依赖于线程的执行顺序或输入数据到达的顺序时…...
联芸科技偏高的关联交易:业绩波动性明显,海康威视曾拥有一票否决
《港湾商业观察》施子夫 5月31日,上交所上市审核委员会将召开2024年第14次审议会议,届时将审议联芸科技(杭州)股份有限公司招股书(以下简称,联芸科技)的首发上会事项。 据悉,此次系…...
hexo init命令报错:Error: EPERM: operation not permitted, mkdir ‘D:\‘
我用的是git bash通过hexo init安装hexo的,但是报错如下: $ hexo init INFO Cloning hexo-starter https://github.com/hexojs/hexo-starter.git fatal: unable to access https://github.com/hexojs/hexo-starter.git/: HTTP/2 stream 1 was not clos…...
day-37 最大正方形
思路 动态规划,这题主要得弄明白状态转换方程,dp[i][j]表示以(i,j)为右下角的最大正方形 解题方法 1.首先将第一行和第一列初始化,当对应位置的matrix为’0’时,dp数组对应位置也为零,否则为1 …...
springboot 3.3版本 类数据共享(CDS)提升启动速度 使用方法+Docker打包代码
springboot 3.3 版本已经正式发布,新版本提供了类数据共享(CDS)功能,通过将类元数据缓存在 Archive(归档/存档) 文件中,使其可以快速预加载到新启动的 JVM 中,从而帮助缩短 JVM 的启…...
Django 目录
Django 创建项目及应用-CSDN博客 Django 注册应用-CSDN博客 Django 应用的路由访问-CSDN博客 Django templates 存放html目录-CSDN博客 Django 解析路由参数-CSDN博客 Django 用re_path()方法正则匹配复杂路由-CSDN博客 Django 反向解析路由-CSDN博客 Django HttpReques…...
VirtualBox Ubuntu系统硬盘扩容
1、关闭虚拟机,找到需要扩容的硬盘,修改为新的容量80GB,应用保存。 2、打开VM,进入系统,使用lsblk可以看到硬盘容量已经变为80GB,但硬盘根分区还没有扩容,使用df查看根文件系统也没有扩容。 [19…...
【自动驾驶】针对低速无人车的线控底盘技术
目录 术语定义 一般要求 操纵装置 防护等级 识别代号 技术要求 通过性要求 直线行驶稳定性 环境适应性要求 功能安全要求 信息安全要求 故障处理要求 通信接口 在线升级(OTA) 线控驱动 动力性能 驱动控制响应能力 线控制动 行车制动 制动响应能力 线控转向 总体要求 线控…...
Kotlin 继承和实现
文章目录 前言继承(extend)实现(implement)继承与实现 前言 在 Kotlin 中,继承和实现都是在类名后使用冒号:,后边加上其他类或接口的名称来表示,二者之间写法没有太大区别(类需要加…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
