当前位置: 首页 > news >正文

【TensorFlow深度学习】卷积层变种与深度残差网络原理

卷积层变种与深度残差网络原理

      • 卷积层变种与深度残差网络:探究卷积神经网络的进化与优化策略
        • 卷积层:深度学习的基石
        • 变种与卷积层变种
        • 深差网络:深度网络的优化策略
        • 实战代码示例:ResNet模块实现
        • 结语

卷积层变种与深度残差网络:探究卷积神经网络的进化与优化策略

在深度学习的浩瀚海中,卷积神经网络(CNN)犹如一座灯塔,而深度残差网络(ResNet)则是在这座塔尖的明珠。本文将深入浅出积层变种,解析其在CNN中的应用,继而探索ResNet的原理与优化策略,如何解决过拟合,构建更健壮丽的深度模型。

卷积层:深度学习的基石

卷积层,是CNN的基石,核心。它通过卷积运算,滤波器(kernel)在输入特征图上滑动,提取局部特征。每个滤波器输出一个特征图,多个滤波器构成特征图。这种局部连接方式不仅减少了参数量,还保留了数据的空间信息,提升了模型的表达能力。

变种与卷积层变种

随着深度的增加,卷积层的变种成为必需。这包括大小、步长、填充、组积核大小、激活函数等。例如,大小影响特征图的尺寸,小化减少计算;填充可以保持输出尺寸;组积在深度方向上分组卷积,减少参数量。

深差网络:深度网络的优化策略

ResNet,何凯明等在2015年提出,通过在层间添加直接连接(Skip Connection)解决过拟合问题。ResBlock,输入与输出间相加,使网络具备回退能力,即使深也能学习浅层的性能。ResNet的提出,不仅深度模型训练稳定,泛化能力也显著增强,ImageNet竞赛上取得了佳绩。

实战代码示例:ResNet模块实现
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, MaxPooling2D, Dense, Flattendef residual_block(inputs, filters, strides=1):x = Conv2D(filters, 3, strides=strides, padding='same')(inputs)x = BatchNormalization()(x)x = Activation('relu')(')(x)x = Conv2D(filters, 3, padding='same')(x)x = BatchNormalization()(x)x = Add()([inputs, x])x = Activation('relu')(')(x)return xdef resnet():inputs = Input(shape=(28, 28, 3)x = Conv2D(64, 7, strides=2, padding='same')(inputs)x = BatchNormalization()(x)x = Activation('relu')(')(x)x = MaxPooling(3, strides=2)(x)x = residual_block(64, strides=1)x = residual(64, strides=2)x = residual(16, strides=2)x = residual(16, strides=2)x = AveragePooling()(x)x = Flatten()(x)x = Dense(10, activation='softmax')(x)return Model(inputs=inputs, outputs=x)model = resnet()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
结语

积层与ResNet,前者是深度学习演进化的关键基石,后者是优化策略的创新。积层变种让CNN适应多样的数据,深度,而ResNet通过Skip Connection解决过拟合,使模型深。理解这两者,你将能构建更健壮、泛化的深度模型,深度学习之旅更进一步。通过代码实践,不仅掌握理论,更感受深度学习的魅力。

相关文章:

【TensorFlow深度学习】卷积层变种与深度残差网络原理

卷积层变种与深度残差网络原理 卷积层变种与深度残差网络:探究卷积神经网络的进化与优化策略卷积层:深度学习的基石变种与卷积层变种深差网络:深度网络的优化策略实战代码示例:ResNet模块实现结语 卷积层变种与深度残差网络&#…...

每日一题《leetcode-- LCR 025.两数相加||》

https://leetcode.cn/problems/lMSNwu/ 分别把给定的两个链表翻转,然后从头开始相加。 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ //反转链表 struct ListNode* reverselist(struct ListNode*h…...

MySQL数据库的约束

MySQL对于数据库存储的数据, 做出一些限制性要求, 就叫做数据库的"约束". 在每一列的 列名, 类型 后面加上"约束". 一. not null (非空) 指定某列不能存储null值. 二. unique (唯一) 保证这一列的每行必须有唯一值. 我们可以看到, 给 table 的 sn 列插…...

计算机毕业设计 | springboot+vue会议室管理系统(附源码)

1,绪论 1.1 项目背景 随着企业规模的不断扩大,会议室管理愈加复杂。传统的手工预约会议室的方式已经无法满足现代企业的需求,因此,开发一套会议室系统方案变得尤为重要。会议室系统可以实现会议室的在线预约、会议室资源的有效利…...

常见端口及其脆弱点

端口及脆弱性 ⚫ FTP (21/TCP) 1.默认用户名密码anonymous:anonymous 2.暴力破解密码 3.VSFTP 某版本后门 ⚫ SSH (22/TCP) 1.部分版本 SSH 存在漏洞可枚举用户名 2.暴力破解密码 ⚫ Telent (23/TCP) 1.暴力破解密码 2.嗅探抓取明文密码 ⚫ SMTP (25/TCP) 1.无认证…...

JS函数的进阶

目录 递归和堆栈Rest参数与Spread语法闭包全局对象高阶函数函数对象和绑定装饰者模式和转发深入理解箭头函数递归和堆栈 递归 递归是一种编程技巧,函数在其定义中直接或间接地调用自身,通常用来解决具有明确递归结构的问题,如树形结构遍历、排序算法(如快速排序)、数学问…...

【UE+GIS】UE5GIS CAD或shp构建3D地形

贴合地形的矢量图形实现方法 一、灰度图的制作和拉伸换算1、基于高程点集实现2、基于等高线实现3、拉伸计算 二、生成地形模型的实现方案1、3Dmax导入灰度图2、使用ArcMap/Arcpro/FME等GIS数据处理工具3、UE导入灰度图 三、地形上叠加地形渲染效果的实现方案1、贴花2、数据渲染…...

Unity学习笔记---音视频播放

音频 Audiolistener组件 AudioListener组件是音频监听器,将组件挂在角色或camera上面,每个场景中最多只有一个AudioListener组件。 AudioSource组件 AudioSource组件是音源,用来播放音频AudioClip.将他挂在产生声音的物体上,可…...

项目集成过程中的makefile记录

项目集成过程中的makefile记录 文章目录 项目集成过程中的makefile记录1.基础概念注释打印赋值方式常用变量$ 伪目标函数wildcard 多目录、文件操作 2.思路梳理**需求分析**目录结构 3.可行示例 持续更新中1.基础概念 注释 # 示例: # 项目名称打印 echo "H…...

Vue3 -Computed计算属性

前言: Computed属性属于Vue3中的响应式核心(与之共同说明的还有ref,reactive,watch...) 接受一个 getter 函数,返回一个只读的响应式 ref 对象。该 ref 通过 .value 暴露 getter 函数的返回值。它也可以接受一个带有 get 和 set…...

MySQL—函数—日期函数(基础)

一、引言 接下来讨论和学习关于函数的第三个方面——日期函数。 常见的MySQL当中的日期函数。 注意: 1、CURDATE():cur:current 当前的,返回的是当前日期。 2、CURTIME():当前时间。 3、NOW:当前的日期和…...

Java+SVNCloud+Mysql课程设计

文章目录 1、主要内容2、所需准备3、与sql访问的中间类:SqlMessage4、窗口界面5、main方法 1、主要内容 课程设计,主要通过Javas wing创建窗口,jdbc连接云端mysql数据库进行基本操作,支持随机生成数据并用动态展示数据结果。 先…...

MySQL之创建高性能的索引(四)

创建高性能的索引 空间数据索引(R-Tree) MyISAM表支持空间索引,可以用作地理数据存储。和B-Tree索引不同,这类索引无须前缀查询。空间索引会从所有维度来索引数据。查询时,可以有效地使用任意维度来组合查询。必须使用MySQL的GIS相关函数如…...

Python 限制输入数的范围

Python 限制输入数的范围 在 Python 编程中,我们经常需要限制用户输入的数据范围,以避免一些可能出现的问题。例如,在一个游戏程序中,我们可能想要确保玩家的分数在某个范围内,而不是太高或太低。在这个博文中&#x…...

STM32两轮平衡小车原理详解

STM32两轮平衡小车是一种基于STM32微控制器的智能机器人,它能够通过传感器和算法实现自我平衡。以下是对STM32两轮平衡小车原理的详解,以及一些基础的代码示例。 原理详解 1. 系统组成 主控制器:STM32系列微控制器,作为小车的大…...

(笔记)如何评价一个数仓的好坏

如何评价一个数仓的好坏 1数据质量产生原因评估方法流程 2模型建设产生问题原因评估方法流程 3数据安全产生问题原因评估方法流程 4成本/性能产生问题原因评估方法流程 5 用户用数体验产生问题原因评估方法流程 6数据资产覆盖产生问题原因评估方法流程 数仓评价好坏是对数仓全流…...

友善RK3399v2平台利用rkmpp实现硬件编解码加速

测试VPU 编译mpp sudo apt update sudo apt install gcc g cmake make cd ~ git clone https://github.com/rockchip-linux/mpp.git cd mpp/build/linux/aarch64/ sed -i s/aarch64-linux-gnu-gcc/gcc/g ./arm.linux.cross.cmake sed -i s/aarch64-linux-gnu-g/g/g ./arm.lin…...

Mysql 8.0 主从复制及读写分离搭建记录

前言 搭建参考:搭建Mysql主从复制 为什么要做主从复制? 做数据的热备,作为后备数据库,主数据库服务器故障后,可切换到从数据库继续工作,避免数据丢失。架构的扩展。业务量越来越大,I/O访问频…...

PyTorch、显卡、CUDA 和 cuDNN 之间的关系

概述 PyTorch、显卡、CUDA 和 cuDNN 之间的关系及其工作原理可以这样理解: 显卡 (GPU) 显卡,特别是 NVIDIA 的 GPU,具有大量的并行处理单元,这些单元可以同时执行大量相似的操作,非常适合进行大规模矩阵运算&#x…...

Lambda 表达式练习

目录 sorted() 四种排序 List 转 Map map 映射 对象中 String 类型属性为空的字段赋值为 null BiConsumer,> T reduce(T identity, BinaryOperator accumulator) allMatch(Predicate p) groupingBy(Function f) flatMap(Function f) Optional.ofNullable(T t) 和 …...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...

ThreadLocal 源码

ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...

基于谷歌ADK的 智能产品推荐系统(2): 模块功能详解

在我的上一篇博客:基于谷歌ADK的 智能产品推荐系统(1): 功能简介-CSDN博客 中我们介绍了个性化购物 Agent 项目,该项目展示了一个强大的框架,旨在模拟和实现在线购物环境中的智能导购。它不仅仅是一个简单的聊天机器人,更是一个集…...

java 局域网 rtsp 取流 WebSocket 推送到前端显示 低延迟

众所周知 摄像头取流推流显示前端延迟大 传统方法是服务器取摄像头的rtsp流 然后客户端连服务器 中转多了,延迟一定不小。 假设相机没有专网 公网 1相机自带推流 直接推送到云服务器 然后客户端拉去 2相机只有rtsp ,边缘服务器拉流推送到云服务器 …...

Qt/C++学习系列之列表使用记录

Qt/C学习系列之列表使用记录 前言列表的初始化界面初始化设置名称获取简单设置 单元格存储总结 前言 列表的使用主要基于QTableWidget控件,同步使用QTableWidgetItem进行单元格的设置,最后可以使用QAxObject进行单元格的数据读出将数据进行存储。接下来…...