当前位置: 首页 > news >正文

【TensorFlow深度学习】卷积层变种与深度残差网络原理

卷积层变种与深度残差网络原理

      • 卷积层变种与深度残差网络:探究卷积神经网络的进化与优化策略
        • 卷积层:深度学习的基石
        • 变种与卷积层变种
        • 深差网络:深度网络的优化策略
        • 实战代码示例:ResNet模块实现
        • 结语

卷积层变种与深度残差网络:探究卷积神经网络的进化与优化策略

在深度学习的浩瀚海中,卷积神经网络(CNN)犹如一座灯塔,而深度残差网络(ResNet)则是在这座塔尖的明珠。本文将深入浅出积层变种,解析其在CNN中的应用,继而探索ResNet的原理与优化策略,如何解决过拟合,构建更健壮丽的深度模型。

卷积层:深度学习的基石

卷积层,是CNN的基石,核心。它通过卷积运算,滤波器(kernel)在输入特征图上滑动,提取局部特征。每个滤波器输出一个特征图,多个滤波器构成特征图。这种局部连接方式不仅减少了参数量,还保留了数据的空间信息,提升了模型的表达能力。

变种与卷积层变种

随着深度的增加,卷积层的变种成为必需。这包括大小、步长、填充、组积核大小、激活函数等。例如,大小影响特征图的尺寸,小化减少计算;填充可以保持输出尺寸;组积在深度方向上分组卷积,减少参数量。

深差网络:深度网络的优化策略

ResNet,何凯明等在2015年提出,通过在层间添加直接连接(Skip Connection)解决过拟合问题。ResBlock,输入与输出间相加,使网络具备回退能力,即使深也能学习浅层的性能。ResNet的提出,不仅深度模型训练稳定,泛化能力也显著增强,ImageNet竞赛上取得了佳绩。

实战代码示例:ResNet模块实现
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, MaxPooling2D, Dense, Flattendef residual_block(inputs, filters, strides=1):x = Conv2D(filters, 3, strides=strides, padding='same')(inputs)x = BatchNormalization()(x)x = Activation('relu')(')(x)x = Conv2D(filters, 3, padding='same')(x)x = BatchNormalization()(x)x = Add()([inputs, x])x = Activation('relu')(')(x)return xdef resnet():inputs = Input(shape=(28, 28, 3)x = Conv2D(64, 7, strides=2, padding='same')(inputs)x = BatchNormalization()(x)x = Activation('relu')(')(x)x = MaxPooling(3, strides=2)(x)x = residual_block(64, strides=1)x = residual(64, strides=2)x = residual(16, strides=2)x = residual(16, strides=2)x = AveragePooling()(x)x = Flatten()(x)x = Dense(10, activation='softmax')(x)return Model(inputs=inputs, outputs=x)model = resnet()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
结语

积层与ResNet,前者是深度学习演进化的关键基石,后者是优化策略的创新。积层变种让CNN适应多样的数据,深度,而ResNet通过Skip Connection解决过拟合,使模型深。理解这两者,你将能构建更健壮、泛化的深度模型,深度学习之旅更进一步。通过代码实践,不仅掌握理论,更感受深度学习的魅力。

相关文章:

【TensorFlow深度学习】卷积层变种与深度残差网络原理

卷积层变种与深度残差网络原理 卷积层变种与深度残差网络:探究卷积神经网络的进化与优化策略卷积层:深度学习的基石变种与卷积层变种深差网络:深度网络的优化策略实战代码示例:ResNet模块实现结语 卷积层变种与深度残差网络&#…...

每日一题《leetcode-- LCR 025.两数相加||》

https://leetcode.cn/problems/lMSNwu/ 分别把给定的两个链表翻转,然后从头开始相加。 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ //反转链表 struct ListNode* reverselist(struct ListNode*h…...

MySQL数据库的约束

MySQL对于数据库存储的数据, 做出一些限制性要求, 就叫做数据库的"约束". 在每一列的 列名, 类型 后面加上"约束". 一. not null (非空) 指定某列不能存储null值. 二. unique (唯一) 保证这一列的每行必须有唯一值. 我们可以看到, 给 table 的 sn 列插…...

计算机毕业设计 | springboot+vue会议室管理系统(附源码)

1,绪论 1.1 项目背景 随着企业规模的不断扩大,会议室管理愈加复杂。传统的手工预约会议室的方式已经无法满足现代企业的需求,因此,开发一套会议室系统方案变得尤为重要。会议室系统可以实现会议室的在线预约、会议室资源的有效利…...

常见端口及其脆弱点

端口及脆弱性 ⚫ FTP (21/TCP) 1.默认用户名密码anonymous:anonymous 2.暴力破解密码 3.VSFTP 某版本后门 ⚫ SSH (22/TCP) 1.部分版本 SSH 存在漏洞可枚举用户名 2.暴力破解密码 ⚫ Telent (23/TCP) 1.暴力破解密码 2.嗅探抓取明文密码 ⚫ SMTP (25/TCP) 1.无认证…...

JS函数的进阶

目录 递归和堆栈Rest参数与Spread语法闭包全局对象高阶函数函数对象和绑定装饰者模式和转发深入理解箭头函数递归和堆栈 递归 递归是一种编程技巧,函数在其定义中直接或间接地调用自身,通常用来解决具有明确递归结构的问题,如树形结构遍历、排序算法(如快速排序)、数学问…...

【UE+GIS】UE5GIS CAD或shp构建3D地形

贴合地形的矢量图形实现方法 一、灰度图的制作和拉伸换算1、基于高程点集实现2、基于等高线实现3、拉伸计算 二、生成地形模型的实现方案1、3Dmax导入灰度图2、使用ArcMap/Arcpro/FME等GIS数据处理工具3、UE导入灰度图 三、地形上叠加地形渲染效果的实现方案1、贴花2、数据渲染…...

Unity学习笔记---音视频播放

音频 Audiolistener组件 AudioListener组件是音频监听器,将组件挂在角色或camera上面,每个场景中最多只有一个AudioListener组件。 AudioSource组件 AudioSource组件是音源,用来播放音频AudioClip.将他挂在产生声音的物体上,可…...

项目集成过程中的makefile记录

项目集成过程中的makefile记录 文章目录 项目集成过程中的makefile记录1.基础概念注释打印赋值方式常用变量$ 伪目标函数wildcard 多目录、文件操作 2.思路梳理**需求分析**目录结构 3.可行示例 持续更新中1.基础概念 注释 # 示例: # 项目名称打印 echo "H…...

Vue3 -Computed计算属性

前言: Computed属性属于Vue3中的响应式核心(与之共同说明的还有ref,reactive,watch...) 接受一个 getter 函数,返回一个只读的响应式 ref 对象。该 ref 通过 .value 暴露 getter 函数的返回值。它也可以接受一个带有 get 和 set…...

MySQL—函数—日期函数(基础)

一、引言 接下来讨论和学习关于函数的第三个方面——日期函数。 常见的MySQL当中的日期函数。 注意: 1、CURDATE():cur:current 当前的,返回的是当前日期。 2、CURTIME():当前时间。 3、NOW:当前的日期和…...

Java+SVNCloud+Mysql课程设计

文章目录 1、主要内容2、所需准备3、与sql访问的中间类:SqlMessage4、窗口界面5、main方法 1、主要内容 课程设计,主要通过Javas wing创建窗口,jdbc连接云端mysql数据库进行基本操作,支持随机生成数据并用动态展示数据结果。 先…...

MySQL之创建高性能的索引(四)

创建高性能的索引 空间数据索引(R-Tree) MyISAM表支持空间索引,可以用作地理数据存储。和B-Tree索引不同,这类索引无须前缀查询。空间索引会从所有维度来索引数据。查询时,可以有效地使用任意维度来组合查询。必须使用MySQL的GIS相关函数如…...

Python 限制输入数的范围

Python 限制输入数的范围 在 Python 编程中,我们经常需要限制用户输入的数据范围,以避免一些可能出现的问题。例如,在一个游戏程序中,我们可能想要确保玩家的分数在某个范围内,而不是太高或太低。在这个博文中&#x…...

STM32两轮平衡小车原理详解

STM32两轮平衡小车是一种基于STM32微控制器的智能机器人,它能够通过传感器和算法实现自我平衡。以下是对STM32两轮平衡小车原理的详解,以及一些基础的代码示例。 原理详解 1. 系统组成 主控制器:STM32系列微控制器,作为小车的大…...

(笔记)如何评价一个数仓的好坏

如何评价一个数仓的好坏 1数据质量产生原因评估方法流程 2模型建设产生问题原因评估方法流程 3数据安全产生问题原因评估方法流程 4成本/性能产生问题原因评估方法流程 5 用户用数体验产生问题原因评估方法流程 6数据资产覆盖产生问题原因评估方法流程 数仓评价好坏是对数仓全流…...

友善RK3399v2平台利用rkmpp实现硬件编解码加速

测试VPU 编译mpp sudo apt update sudo apt install gcc g cmake make cd ~ git clone https://github.com/rockchip-linux/mpp.git cd mpp/build/linux/aarch64/ sed -i s/aarch64-linux-gnu-gcc/gcc/g ./arm.linux.cross.cmake sed -i s/aarch64-linux-gnu-g/g/g ./arm.lin…...

Mysql 8.0 主从复制及读写分离搭建记录

前言 搭建参考:搭建Mysql主从复制 为什么要做主从复制? 做数据的热备,作为后备数据库,主数据库服务器故障后,可切换到从数据库继续工作,避免数据丢失。架构的扩展。业务量越来越大,I/O访问频…...

PyTorch、显卡、CUDA 和 cuDNN 之间的关系

概述 PyTorch、显卡、CUDA 和 cuDNN 之间的关系及其工作原理可以这样理解: 显卡 (GPU) 显卡,特别是 NVIDIA 的 GPU,具有大量的并行处理单元,这些单元可以同时执行大量相似的操作,非常适合进行大规模矩阵运算&#x…...

Lambda 表达式练习

目录 sorted() 四种排序 List 转 Map map 映射 对象中 String 类型属性为空的字段赋值为 null BiConsumer,> T reduce(T identity, BinaryOperator accumulator) allMatch(Predicate p) groupingBy(Function f) flatMap(Function f) Optional.ofNullable(T t) 和 …...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层&#xf…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

OpenLayers 分屏对比(地图联动)

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

安卓基础(aar)

重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found"​, "n…...