当前位置: 首页 > news >正文

fintuning chatglm3

chatglm3介绍

ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:

更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。
更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM-6B-Base、长文本对话模型 ChatGLM3-6B-32K。以上所有权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。

chatglm3调优

所有的调优的方式, 均参照了chatglm的官方手册:
需要至少准备拿没有足够的显存只能进行的lora 模型的调优

  • SFT 全量微调: 4张显卡平均分配,每张显卡占用 48346MiB 显存。
  • P-TuningV2 微调: 1张显卡,占用 18426MiB 显存。
  • LORA 微调: 1张显卡,占用 14082MiB 显存。

lora是使用一张3060ti的显卡就能进行
P-tuningV2 需要12G以上的显卡,建议是3080ti及以上

环境搭建:

使用了推荐的conda的方式,进行了依赖的安装

conda create -n chatglm python=3.10
conda activate chatglm3
pip install -r requirementss.txt
问题和修正

出现的问题点如下:

问题一:

import mpi4py 直接导入不报错

from mpi4py import MPI出现报错ImportError: libmpi.so.40: cannot open shared object file: No such file or directory

网上找了好久的方法,试了很多都不行
最后在这里找到了解决办法,在终端下载openmpi就可以了:

conda install -c conda-forge openmpi=4.1.2
问题二:
The Open MPI wrapper compiler was unable to find the specified compilerx86_64-conda-linux-gnu-cc in your PATH.

解决方案

conda install gxx_linux-64 gcc_linux-64

数据准备

这里以 AdvertiseGen 数据集为例, 您可以从 Google Drive 或者 Tsinghua Cloud 下载 AdvertiseGen 数据集。 将解压后的 AdvertiseGen 目录放到 data 目录下并自行转换为如下格式数据集。

数据转换脚本内容如下:

import jsondef transform_data(input_file_path, output_file_path):datas = []# Read the content of the filewith open(input_file_path, 'r', encoding='utf-8') as file:for line in file:conversations = []if line.strip():  # Check if line is not empty# Parse the JSON stringitem = json.loads(line)# Add user and assistant messagesuser_message = {"role": "user","content": item["content"]}assistant_message = {"role": "assistant","content": item["summary"]}# Append to conversations listconversations.extend([user_message, assistant_message])# Prepare the output structuredatas.append({"conversations": conversations})# Write the output to a new filewith open(output_file_path, 'w', encoding='utf-8') as out_file:json.dump(datas, out_file, ensure_ascii=False, indent=2)# Define the input and output file paths
input_file_path = 'data/AdvertiseGen_back/dev.json'  # Update this path
output_file_path = 'data/AdvertiseGen/formatted_data_dev.json'  # Update this path# Call the function to transform the data
transform_data(input_file_path, output_file_path)print("Data transformation complete. The formatted data is saved to", output_file_path)

通过上面的脚本,把里面的内容汇总成可以用来进行训练的数据,转换完成之后将数据copy到data下面的AdvertiseGen 目录下面

调优

调优直接参照命令:

lora 方式

通过以下代码执行 单机多卡/多机多卡 运行,这是使用 deepspeed 作为加速方案的,您需要安装 deepspeed。

cd finetune_demo
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=8  finetune_hf.py  data/AdvertiseGen/  THUDM/chatglm3-6b  configs/lora.yaml

通过以下代码执行 单机单卡 运行。

cd finetune_demo
python finetune_hf.py  data/AdvertiseGen/  THUDM/chatglm3-6b  configs/lora.yaml

训练过程中是可以按照step继续的,具体参照官方的文档

P tunV2方式

和lora的不同,也就是把lora修改为ptun就行了

cd finetune_demo
python finetune_hf.py  data/AdvertiseGen/  THUDM/chatglm3-6b  configs/ptuning_v2.yaml
SFT 方式

24G显存跑不起来, 放弃了

测试ptuning_v2.yaml

在 inference_hf.py 中验证微调后的模型
可以在 finetune_demo/inference_hf.py 中使用我们的微调后的模型,仅需要一行代码就能简单的进行测试。
这里tunning出来的内容被存储在了output目录里面

python inference_hf.py your_finetune_path --prompt your prompt

测试代码如下

 python inference_hf.py output/checkpoint-3000  --prompt  "类型#裙*版型#显瘦*材质#网纱*风格#性感*裙型#百褶*裙下摆#压褶*裙长#连衣裙*裙衣门襟#拉链*裙衣门襟#套头*裙款式#拼接*裙款式#拉链*裙款式#木耳边*裙款式#抽褶*裙款式#不规则"

测试结果如下:
在这里插入图片描述

参考链接

https://github.com/THUDM/ChatGLM3/blob/main/finetune_demo/README.md

相关文章:

fintuning chatglm3

chatglm3介绍 ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性: 更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用…...

草台班子啊草台班子:共享电源导致的BUG(供电不足)

某日吧(其实就是今日,不过什么时候我又删帖重发也不一定啊),下工厂干活,机器里面没多的插座(其实一个插座都没有,但是有一个24V电源的的设备),于是带队的下令并着接&…...

java递归计算文件夹和文件大小

背景 背景发现电脑c盘占用过高,然而我却不清楚是哪些文件占用了磁盘空间,于是我希望用程序来帮我完成这件事。小插曲:开始的时候,我使用python来做的,结果发现效率实在是太低,最后用java重写了一波。有需要的同学可以拿去修改一些。 代码 import java.io.File; import ja…...

硬币检测电路设计

一、来源:凡亿教育 第一场:硬币检测装置原理分析、电路设计以及器件选型_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Zh4y1V7Px/?p1&vd_source43eb1cb50ad3175d7f3b9385905cd88f 二、开发软件:KEIL MDK 三、主控芯片&#…...

3.基础光照

从宏观上讲渲染包含了两大部分:决定一个像素的可见性,决定一个像素的光照计算 而光照模型就是用于决定在一个像素上决定怎样的渲染光照计算。 一、我们是如何看到这个世界的 1.光源 实时渲染中,我们通常把光源当成一个没有体积的点&#…...

Image Search-这是你的图像搜索

Image Search-这是你的图像搜索 什么是图像搜索图像搜索开通图像搜索商品图片搜索图片搜索图片新增批量操作OSS-创建bucket上传文件创建increment.meta并上传元信息导出 体验感受 什么是图像搜索 在接触一个新的产品时,我们首先要知道这款产品是什么?那…...

对GPT-4o的评价:技术革新与未来展望

目录 引言一、GPT-4o的技术背景1.1 GPT系列的发展历程1.2 GPT-4o的技术特点 二、版本间的对比分析2.1 GPT-3与GPT-4的对比2.2 GPT-4与GPT-4o的对比 三、GPT-4o的技术能力3.1 自然语言处理3.2 多模态处理3.3 任务定制化 四、个人整体感受4.1 交互体验4.2 应用场景4.3 未来展望 五…...

【TB作品】msp430f5529单片机,dht22,烟雾传感器

功能 //硬件:msp430f5529、dht22、LCD1602、蜂鸣器、烟雾传感器、蓝牙模块。 //功能:读取温湿度、烟雾浓度显示到屏幕; //按键调节三个报警数值; //温度、湿度、烟雾浓度,任意一个大于报警数值就蜂鸣器报警&#xff1…...

uni-app全局弹窗的实现方案

背景 为了解决uni-app 任意位置出现弹窗 解决方案 一、最初方案 受限于uni-app 调用组件需要每个页面都引入注册才可以使用,此方案繁琐,每个页面都要写侵入性比较强 二、改进方案 app端:新建一个页面进行跳转,可以实现伪弹窗…...

Love-Yi情侣网站3.0存在SQL注入漏洞

目录 1. 前言 2. 网站简介 3. 寻找特征点 3.1 第一次尝试 3.2 第二次尝试 4.资产搜索 5.漏洞复现 5.1 寻找漏洞点 5.2 进行进一步测试 5.2.1 手动测试 1.寻找字段 2.寻找回显位 3.查询当前用户 5.2.2 sqlmap去跑 6.总结 1. 前言 朋友说自己建了一个情侣网站,看到…...

自然语言处理(NLP)—— 神经网络语言处理

1. 总体原则 1.1 深度神经网络(Deep Neural Network)的训练过程 下图展示了自然语言处理(NLP)领域内使用的深度神经网络(Deep Neural Network)的训练过程的简化图。 在神经网络的NLP领域: 语料…...

SHA256计算原理

标签: SHA256计算原理;SHA256;SHA-2; SHA-256计算原理 SHA-256(Secure Hash Algorithm 256-bit)是SHA-2系列中的一种哈希算法,它由美国国家安全局(NSA)设计,并由美国国家标准与技术研究院(NIST)发布。SHA-256主要用于数据完整性验证和数字签名等领域。以下是SHA-…...

Mysql | select语句导入csv后再导入excel表格

需求 从mysql数据库中导出数据到excel 解决方案 sql导出csv文件 sql SELECT col1,col2 FROM tab_01 WHERE col3 xxx INTO OUTFILE /tmp/result.csv FIELDS TERMINATED BY , ENCLOSED BY " LINES TERMINATED BY \n;csv文件导出excel文件 1、【数据】-【导入数据】 …...

SpringBoot:手动创建应用

Spring提供了在线的Spring Initialzr在线创建Spring Boot项目,为了更好的理解Spring Boot项目,这里我们选择手动创建。 1.新建Web应用 1.1 生成工程 首先要做是创建一个Java项目,这里我们选择使用Maven来支持,使用archetype:ge…...

【LeetCode】39.组合总和

组合总和 题目描述: 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的 同一个…...

用JS来控制遥控车(一行代码即可连接, 超简单!)

简介 有些时候我们想要做车辆的某一个功能,但是又不想浪费时间做整辆小车时,一般会去买一辆差不多的遥控车来改,但是那也比较麻烦,市面上好像也没有便宜的直接提供编程接口的遥控车。所以就自己做一个吧~。 主要是要实现向外提供…...

MyBatis-Plus如何优雅的配置多租户及分页

MyBatis-Plus如何优雅的配置多租户及分页 一、配置多租户1、步骤一2、步骤二3、步骤三步骤四 二、配置分页1、步骤一2、步骤二3、步骤三 一、配置多租户 TenantLineInnerInterceptor 是 MyBatis-Plus 提供的一个插件,用于实现多租户的数据隔离。通过这个插件&#…...

国产操作系统上Vim的详解01--vim基础篇 _ 统信 _ 麒麟 _ 中科方德

原文链接:国产操作系统上Vim的详解01–vim基础篇 | 统信 | 麒麟 | 中科方德 Hello,大家好啊!今天给大家带来一篇在国产操作系统上使用Vim的详解文章。Vim是一款功能强大且高度可定制的文本编辑器,广泛应用于编程和日常文本编辑中。…...

如何正确理解事件溯源架构模式?

在微服务架构盛行的当下,DDD(领域驱动设计)也得到了崭新的发展。同时,随着DDD的不断发展,也诞生了一些新的设计思想和开发模式,今天要介绍的事件溯源是其中具有代表性的一种模式。 事件溯源模式是DDD领域中…...

【漏洞复现】电信网关配置管理系统 rewrite.php 文件上传漏洞

0x01 产品简介 中国电信集团有限公司(英文名称"China Telecom”、简称“"中国电信”)成立于2000年9月,是中国特大型国有通信企业、上海世博会全球合作伙伴。电信网关配置管理系统是一个用于管理和配置电信网络中网关设备的软件系统。它可以帮助网络管理员…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...

若依登录用户名和密码加密

/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...

React核心概念:State是什么?如何用useState管理组件自己的数据?

系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...