【机器学习】之 kmean算法原理及实现
基本概念
K-Means 聚类算法的目标是将数据集分成 ( K ) 个簇,使得每个簇内的数据点尽可能相似,而簇与簇之间尽可能不同。这种相似度是通过计算数据点与簇中心的距离来衡量的。
算法步骤
- 选择簇的数量 ( K ):随机选择 ( K ) 个数据点作为初始簇中心(质心)。
- 分配数据点:将每个数据点分配到距离最近的簇中心,形成 ( K ) 个簇。
- 更新簇中心:重新计算每个簇的质心,即该簇所有数据点的均值。
- 重复步骤 2 和 3:直到簇中心的位置不再发生显著变化或达到预设的最大迭代次数。
距离度量
K-Means 算法中通常使用欧氏距离来度量数据点 ( x ) 和簇中心 ( y ) 之间的距离,
实现代码
以下是使用 Python 和 NumPy 实现 K-Means 聚类算法的示例代码:
import numpy as npclass KMeans:def __init__(self, k=3, max_iters=100):self.k = kself.max_iters = max_itersself.centroids = Nonedef fit(self, X):# 随机初始化簇中心self.centroids = X[np.random.choice(X.shape[0], self.k, replace=False)]for _ in range(self.max_iters):# 分配每个样本到最近的簇中心labels = self._assign_clusters(X)# 计算新的簇中心new_centroids = self._calculate_centroids(X, labels)# 检查簇中心是否发生变化if np.all(new_centroids == self.centroids):breakself.centroids = new_centroidsreturn labelsdef _assign_clusters(self, X):# 计算每个数据点到簇中心的距离,并分配到最近的簇中心distances = np.sqrt(((self.centroids[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2).sum(axis=2))return np.argmin(distances, axis=0)def _calculate_centroids(self, X, labels):# 计算每个簇的新簇中心new_centroids = np.array([X[labels == i].mean(axis=0) for i in range(self.k)])return new_centroidsdef predict(self, X):# 预测数据点的簇标签return self._assign_clusters(X)# 示例用法
if __name__ == "__main__":# 创建示例数据X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]])# 创建KMeans实例kmeans = KMeans(k=2, max_iters=100)# 训练模型kmeans.fit(X)# 预测簇标签predictions = kmeans.predict(X)print("簇中心:\n", kmeans.centroids)print("预测簇标签:", predictions)
超参数选择
- ( K ) 值的选择通常依赖于具体问题和数据集。可以使用肘部法则(Elbow Method)或轮廓系数(Silhouette Score)等方法来辅助决定最优的 ( K ) 值。
优缺点
优点
- 简单直观:算法容易理解和实现。
- 计算效率高:对于大规模数据集也相对有效。
缺点
- 对初始簇中心敏感:可能只能找到局部最优解。
- 需要指定 ( K ):簇的数量需要预先指定,这在某些情况下可能不是显而易见的。
- 对非球形簇效果差:对具有复杂形状或大小不一致的簇的识别效果不佳。
总结
K-Means 是一种简单有效的聚类算法,适用于许多实际问题。然而,它也有一些局限性,因此在选择聚类算法时应考虑数据集的特性和具体需求。
相关文章:
【机器学习】之 kmean算法原理及实现
基本概念 K-Means 聚类算法的目标是将数据集分成 ( K ) 个簇,使得每个簇内的数据点尽可能相似,而簇与簇之间尽可能不同。这种相似度是通过计算数据点与簇中心的距离来衡量的。 算法步骤 选择簇的数量 ( K ):随机选择 ( K ) 个数据点作为初…...
国产高边驱动HD70202Q替换英飞凌BTS7040-2
高边驱动也称之为高边开关,主要用于车内负载的驱动与开关,并对负载进行保护和诊断。高边驱动以高可靠性、灵活性、低功耗以及小型轻量等特点,正逐渐替代传统的保险丝、继电器等方案。 RAMSUN提供的HD70202Q车规级双通道智能高边驱动的输入控…...
2024年06月在线IDE流行度最新排名
点击查看最新在线IDE流行度最新排名(每月更新) 2024年06月在线IDE流行度最新排名 TOP 在线IDE排名是通过分析在线ide名称在谷歌上被搜索的频率而创建的 在线IDE被搜索的次数越多,人们就会认为它越受欢迎。原始数据来自谷歌Trends 如果您相…...
顺序表和链表基础操作的复习
顺序表 #include<iostream> using namespace std; 静态 //#define MAX_SIZE 50 //typedef int ElemType; //typedef struct //{ // int length; // ElemType nums[MAX_SIZE]; //}Sqlist; //动态: #define Init_SIZE 50 typedef int ElemType; typedef struct {int lengt…...
[C#]winform部署官方yolov10目标检测的onnx模型
【框架地址】 https://github.com/THU-MIG/yolov10 【算法介绍】 今天为大家介绍的是 YOLOv10,这是由清华大学研究团队最新提出的,同样遵循 YOLO 系列设计原则,致力于打造实时端到端的高性能目标检测器。 方法 创新 双标签分配策略 众所…...
hmcode硬件编程1
在/home/golemon/hmcode/applications/sample/wifi-iot/app内创建文件夹。 这里创建了d_6_3文件夹 . ├── BUILD.gn ├── d_6_3 │ ├── BUILD.gn │ └── lab.c ├── demolink │ ├── BUILD.gn │ └── helloworld.c ├── iothardware │ ├── B…...
[C++][CMake] set_target_properties called with incorrect number of arguments
1 简介 这篇文章将探讨了在使用CMake构建C项目时,调用set_target_properties函数时参数数量不正确所引发的问题。 2 错误案例 以下为可能发生错误的案例 include_directories (${CMAKE_SOURCE_DIR}/common) find_package(Threads)add_library (libusbmuxd SHARE…...
AdamW算法
AdamW算法是优化算法Adam的一个变体,它在深度学习中广泛应用。AdamW的主要改进在于它正则化方法的改变,即通过权重衰减(weight decay)而不是L2正则化,来控制模型参数的大小,从而提升了训练的稳定性和效果。…...
【c++进阶(二)】STL之string类的模拟实现
💓博主CSDN主页:Am心若依旧💓 ⏩专栏分类c从入门到精通⏪ 🚚代码仓库:青酒余成🚚 🌹关注我🫵带你学习更多c 🔝🔝 1.前言 本章重点 本章主要介绍一些关键接口的模拟实现ÿ…...
PHPStudy(xp 小皮)V8.1.1 通过cmd进入MySQL命令行模式
PHPStudy是一个PHP开发环境集成包,可用在本地电脑或者服务器上,该程序包集成最新的PHP/MySql/Apache/Nginx/Redis/FTP/Composer,一次性安装,无须配置即可使用。MySQL MySQL是一个关系型数据库管理系统,由瑞典 MySQL A…...
php反序列化初步了解
一、定义 序列化(串行化):将变量转换为可保存或传输的字符串的过程(通常是字节流、JSON、XML格式) 反序列比(反串行化):把这个字符串再转化成原始数据结构或对象(原来的…...
Windows系统电脑本地部署AI音乐创作工具并实现无公网IP远程使用
文章目录 前言1. 本地部署2. 使用方法介绍3. 内网穿透工具下载安装4. 配置公网地址5. 配置固定公网地址 前言 本文主要介绍如何在Windows系统电脑上快速本地部署一个文字生成音乐的AI创作工具MusicGPT,并结合cpolar内网穿透工具实现随时随地远程访问使用。 MusicG…...
玩转Linux进度条
准备工作: 一.关于缓冲区 首先,咱们先来一段有意思的代码: #include<stdio.h> #include<unistd.h> int main() {printf("you can see me");sleep(5);} 你可以在你的本地运行一下,这里我告诉大家运行结果…...
真国色码上赞,科技流量双剑合璧,商家获客新纪元开启
在数字化浪潮汹涌的今天,真国色研发团队依托红玉房网络科技公司的雄厚实力,凭借科技领先的核心竞争力,推出了创新性的商家曝光引流工具——码上赞。这款工具借助微信支付与视频号已有功能,为实体商家提供了一种全新的引流获客方式,实现了科技与商业的完美融合。 科技领先,流量黑…...
C++:特殊类设计和四种类型转换
一、特殊类设计 1.1 不能被拷贝的类 拷贝只会放生在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝,只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。 C98: 1、将拷贝构造函数与赋值运算符重载只…...
(南京观海微电子)——屏幕材质及优缺点对比
LED/LCD LCD(Liquid Crystal Ddisplay)即“液晶显示器”,由两块偏光镜、两块薄膜晶体管以及彩色滤光片、光源(荧光灯)、显示面板组成的成像元器件。 LED(Light Emitting Diode)即“发光二极管…...
uniapp uni.showModal 出现点击没有反应
uni.showModal 里面有好些参数 点击后不弹出 是因为 出现了 null 或者undifind 字符 特别是content 里面 title: 提示, cancelColor: #000000, editable: true,//是否显示输入框 content: item.text?item.te…...
Vue3-VueRouter
客户端 vs. 服务端路由 服务端路由指的是服务器根据用户访问的 URL 路径返回不同的响应结果。当我们在一个传统的服务端渲染的 web 应用中点击一个链接时,浏览器会从服务端获得全新的 HTML,然后重新加载整个页面。 然而,在单页面应用中&a…...
【图像处理与机器视觉】频率域滤波
知识铺垫 复数 CRjI 可以看作复平面上的点,则该复数的坐标为(R,I) 欧拉公式 e j θ c o s θ j s i n θ e^{j\theta} cos \theta j sin \theta ejθcosθjsinθ 极坐标系中复数可以表示为: C ∣ C ∣ ( c o s…...
python第五次作业
1.请实现一个装饰器,每次调用函数时,将函数名字以及调用此函数的时间点写入文件中 # 导入datetime模块,用于获取当前时间并格式化输出 import datetime# 定义一个装饰器工厂函数log_funcName_time,它接受一个参数time def log_fu…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
