Flink状态State | 大数据技术
⭐简单说两句⭐
✨ 正在努力的小叮当~
💖 超级爱分享,分享各种有趣干货!
👩💻 提供:模拟面试 | 简历诊断 | 独家简历模板
🌈 感谢关注,关注了你就是我的超级粉丝啦!
🔒 以下内容仅对你可见~作者:小叮当撩代码,CSDN后端领域新星创作者 |阿里云专家博主
CSDN个人主页:小叮当撩代码
🔎GZH:
哆啦A梦撩代码🎉欢迎关注🔎点赞👍收藏⭐️留言📝
Flink状态

Flink中的State

State概念
在 Flink 中,状态是流处理程序中非常重要的一部分,它允许你保存和访问数据,以实现复杂的计算逻辑。
可以简单理解为: 历史计算结果
Flink中的算子任务的State分类通常分为两类
1️⃣ 有状态
有状态需要考虑历史的数据,相同的输入可能会得到不同的输出
比如:sum/reduce/maxBy, 对单词按照key分组聚合,进来一个(hello,1),得到(hello,1), 再进来一个(hello,1), 得到的结果为(hello,2)
2️⃣ 无状态
无状态简单说就是不需要考虑历史的数据,相同的输入得到相同的结果
比如map、filter、flatmap算子都属于无状态,不需要依赖其他数据
✅ Flink默认已经支持了无状态和有状态计算!
状态分类
Flink中有两种基本类型的状态:托管状态(Managed State)和原生状态(Raw State)
Managed State是由Flink管理的,Flink帮忙存储、恢复和优化
Raw State是开发者自己管理的,需要自己序列化
❇️通常情况下,我们采用托管状态来实现我们的需求!!!
托管状态
Flink 中,一个算子任务会按照并行度分为多个并行子任务执行,而不同的子任务会占据不同的任务槽(task slot)。由于不同的 slot 在计算资源上是物理隔离的,所以Flink 能管理的状态在并行任务间是无法共享的,每个状态只能针对当前子任务的实例有效。
很多有状态的操作(比如聚合、窗口)都是要先做 keyBy 进行按键分区的。按键分区之后,任务所进行的所有计算都应该只针对当前 key 有效,所以状态也应该按照 key 彼此隔离。在这种情况下,状态的访问方式又会有所不同。
🎨所以:我们又可以将托管状态分为两类:算子状态和按键分区状态。
键控状态Keyed State
详细内容可以瞅瞅官网:https://nightlies.apache.org/flink/flink-docs-release-1.19/zh/docs/dev/datastream/fault-tolerance/state/
Flink 为每个键值维护一个状态实例,并将具有相同键的所有数据,都分区到同一个算子任务中,这个任务会维护和处理这个key对应的状态。当任务处理一条数据时,它会自动将状态的访问范围限定为当前数据的key。因此,具有相同key的所有数据都会访问相同的状态。
需要注意的是键控状态只能在 KeyedStream 上进行使用,可以通过 stream.keyBy(…) 来得到 KeyedStream 。

Flink 提供了以下数据格式来管理和存储键控状态 (Keyed State):
ValueState:存储单值类型的状态。可以使用 update(T) 进行更新,并通过 T value() 进行检索。
ListState:存储列表类型的状态。可以使用 add(T) 或 addAll(List) 添加元素;并通过 get() 获得整个列表。
ReducingState:用于存储经过 ReduceFunction 计算后的结果,使用 add(T) 增加元素。
AggregatingState:用于存储经过 AggregatingState 计算后的结果,使用 add(IN) 添加元素。
FoldingState:已被标识为废弃,会在未来版本中移除,官方推荐使用 AggregatingState 代替。
MapState:维护 Map 类型的状态。
Code实操
例子1
使用KeyState中的ValueState来模拟实现maxBy
代码清单
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;/*** @author tiancx*/
public class StateMaxByDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//加载数据DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("北京", 1),Tuple2.of("上海", 2),Tuple2.of("广州", 3),Tuple2.of("北京", 4),Tuple2.of("上海", 5),Tuple2.of("广州", 6),Tuple2.of("北京", 3)).keyBy(t -> t.f0);source.map(new RichMapFunction<Tuple2<String, Integer>, Tuple3<String, Integer, Integer>>() {//定义状态,用于存储最大值ValueState<Integer> maxValueState = null;//进行初始化@Overridepublic void open(Configuration parameters) throws Exception {//创建状态描述器ValueStateDescriptor<Integer> descriptor = new ValueStateDescriptor<>("maxValueState", Integer.class);maxValueState = getRuntimeContext().getState(descriptor);}@Overridepublic Tuple3<String, Integer, Integer> map(Tuple2<String, Integer> value) throws Exception {//获取当前值Integer currentVal = value.f1;Integer currentMax = maxValueState.value();if (currentMax == null || currentVal > currentMax) {maxValueState.update(currentVal);}return Tuple3.of(value.f0, value.f1, maxValueState.value());}}).print();env.execute();}
}
运行看结果

例子2
如果一个人的体温超过阈值38度,超过3次及以上,则输出: 姓名 [温度1,温度2,温度3]
代码清单
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;import java.util.List;/*** @author tiancx*/
public class StateDemo01 {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);DataStreamSource<String> stream = env.socketTextStream("localhost", 9999);DataStream<Tuple2<String, Integer>> source = stream.map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String value) throws Exception {String[] split = value.split(" ");return Tuple2.of(split[0], Integer.parseInt(split[1]));}}).keyBy(t -> t.f0);source.flatMap(new RichFlatMapFunction<Tuple2<String, Integer>, Tuple2<String, List<Integer>>>() {ListState<Integer> listState = null;//存放超过38度的次数ValueState<Integer> valueState = null;@Overridepublic void open(Configuration parameters) throws Exception {ListStateDescriptor<Integer> listStateDescriptor = new ListStateDescriptor<Integer>("listState", Integer.class);ValueStateDescriptor<Integer> descriptor = new ValueStateDescriptor<>("valueState", Integer.class);listState = getRuntimeContext().getListState(listStateDescriptor);valueState = getRuntimeContext().getState(descriptor);}@Overridepublic void flatMap(Tuple2<String, Integer> value, Collector<Tuple2<String, List<Integer>>> out) throws Exception {System.out.println("进入flatMap");Integer val = value.f1;if (valueState.value() == null) {valueState.update(0);}if (val > 38) {listState.add(val);valueState.update(valueState.value() + 1);}if (valueState.value() >= 3) {List<Integer> list = (List<Integer>) listState.get();out.collect(Tuple2.of(value.f0, list));listState.clear();valueState.clear();}}}).print();env.execute();}
}
输入

运行结果

算子状态OperatorState
算子状态(Operator State)就是一个算子并行实例上定义的状态,作用范围被限定为当前算子任务。算子状态跟数据的 key 无关,所以不同 key 的数据只要被分发到同一个并行子任务,就会访问到同一个 Operator State。
算 子 状 态 也 支 持 不 同 的 结 构 类 型 , 主 要 有 三 种 : ListState 、 UnionListState 和BroadcastState。
code实操
例子1:
在 map 算子中计算数据的个数
代码清单
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.scala.typeutils.Types;
import org.apache.flink.runtime.state.FunctionInitializationContext;
import org.apache.flink.runtime.state.FunctionSnapshotContext;
import org.apache.flink.streaming.api.checkpoint.CheckpointedFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;/*** @author tiancx*/
public class OperatorListStateDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStreamSource<String> stream = env.socketTextStream("localhost", 9999);stream.map(new MyCountMapFunction()).print();env.execute();}public static class MyCountMapFunction implements MapFunction<String, Long>, CheckpointedFunction {private Long count = 0L;private ListState<Long> listState;@Overridepublic Long map(String value) throws Exception {return ++count;}/*** 本地变量持久化:将 本地变量拷贝到算子状态中,开启checkpoint 时才会调用 snapshotState 方法** @param context the context for drawing a snapshot of the operator* @throws Exception*/@Overridepublic void snapshotState(FunctionSnapshotContext context) throws Exception {System.out.println("MyCountMapFunction.snapshotState");listState.clear();listState.add(count);}/*** 初始化本地变量:程序启动和恢复时,从状态中把数据添加到本地变量,每个子任务调用一次** @param context the context for initializing the operator* @throws Exception*/@Overridepublic void initializeState(FunctionInitializationContext context) throws Exception {System.out.println("MyCountMapFunction.initializeState");//从上下文初始化状态listState = context.getOperatorStateStore().getListState(new ListStateDescriptor<>("listState", Types.LONG()));//从算子状态中把数据拷贝到本地变量if (context.isRestored()) {for (Long aLong : listState.get()) {count += aLong;}}}}
}
输入

运行结果

【都看到这了,点点赞点点关注呗,爱你们】😚😚

💬
✨ 正在努力的小叮当~
💖 超级爱分享,分享各种有趣干货!
👩💻 提供:模拟面试 | 简历诊断 | 独家简历模板
🌈 感谢关注,关注了你就是我的超级粉丝啦!
🔒 以下内容仅对你可见~
作者:小叮当撩代码,CSDN后端领域新星创作者 |阿里云专家博主
CSDN个人主页:小叮当撩代码
🔎GZH:哆啦A梦撩代码
🎉欢迎关注🔎点赞👍收藏⭐️留言📝
相关文章:
Flink状态State | 大数据技术
⭐简单说两句⭐ ✨ 正在努力的小叮当~ 💖 超级爱分享,分享各种有趣干货! 👩💻 提供:模拟面试 | 简历诊断 | 独家简历模板 🌈 感谢关注,关注了你就是我的超级粉丝啦! &a…...
go语言方法之方法值和方法表达式
我们经常选择一个方法,并且在同一个表达式里执行,比如常见的p.Distance()形式,实际上 将其分成两步来执行也是可能的。p.Distance叫作“选择器”,选择器会返回一个方法"值"->一 个将方法(Point.Distance)绑定到特定接…...
TDMQ CKafka 版弹性存储能力重磅上线!
导语 自 2024年5月起,TDMQ CKafka 专业版支持弹性存储能力,这种产品形态下,存储可按需使用、按量付费,一方面降低消费即删除、存储使用波动大场景下的存储成本,另一方面存储空间理论上无穷大。 TDMQ CKafka 版产品能…...
24、Linux网络端口
Linux网络端口 1、查看网络接口信息ifconfig ens33 eth0 文件 ifconfig 当前设备正在工作的网卡,启动的设备。 ifconfig -a 查看所有的网络设备。 ifconfig ens33 查看指定网卡设备。 ifconfig ens33 up/down 对指定网卡设备进行开关 基于物理网卡设备虚拟的…...
Mysql全文搜索和LIKE搜索有什么区别
全文搜索和LIKE的区别 性能:在大数据集上,全文搜索通常比LIKE查询更快,因为它使用了专门的索引结构。 功能:全文搜索提供了更丰富的查询功能,如多个关键词的搜索、自然语言搜索、布尔搜索等。而LIKE通常只支持简单的…...
elementplu父级页面怎么使用封装子组件原组件的方法
一、使用原因: 封装了el-table,表格中有多选,父级要根据指定状态,让其选择不上,需要用到elementplus中table原方法toggleRowSelection 附加小知识点:(el-tree刷新树后之前选中的保持高亮setCurr…...
el-date-picker选择开始日期的近半年
<el-date-pickerv-model"form[val.key]":type"val.datePickerType || daterange":clearable"val.clearable && true"range-separator"~"start-placeholder"开始日期"end-placeholder"结束日期"style&q…...
C++
封装一个矩形类(Rect),拥有私有属性:宽度(width)、高度(height), 定义公有成员函数: 初始化函数:void init(int w, int h) 更改宽度的函数:set_w(int w) 更改高度的函数:set_h(int h) 输出该矩形的周长和面积函数:void show()...
nginx源码阅读理解 [持续更新,建议关注]
文章目录 前述一、nginx 进程模型基本流程二、源码里的小点1.对字符串操作都进行了原生实现2.配置文件解析也是原生实现待续 前述 通过对 nginx 的了解和代码简单阅读,发现这个C代码的中间件确实存在过人之处,使用场景特别多,插件模块很丰富…...
笔试训练2
牛客.单词搜索 刚开始我就想是搜索,但是不清楚bfs还是dfs更好,我尝试了bfs但是队列存东西,没有我想象的那么好写,所以我决定试试dfs import java.util.*;public class Solution {static int m 0;static int n 0;static int […...
构建坚不可摧的Web安全防线:深入剖析二阶注入与全面防御策略
引言 在数字化时代,数据安全是企业和个人最为关注的问题之一。网络攻击手段层出不穷,其中SQL注入攻击尤为狡猾,它允许攻击者通过Web应用的漏洞对数据库进行非法操作。更隐蔽的是二阶注入攻击,它不仅威胁当前操作,还能…...
(4) qml动态元素
文章目录 概述注意 动画元素变化的策略Animation on 变化behavior on⽤standalone animation注意 缓冲曲线(Easing Curves)动画分组 概述 这⼀章介绍如何控制属性值的变化,通过动画的⽅式在⼀段时间内来改变属性值。这项技术是建⽴⼀个现代化…...
深度神经网络——什么是梯度下降?
如果对神经网络的训练有所了解,那么很可能已经听说过“梯度下降”这一术语。梯度下降是提升神经网络性能、降低其误差率的主要技术手段。然而,对于机器学习新手来说,梯度下降的概念可能稍显晦涩。本文旨在帮助您直观理解梯度下降的工作原理。…...
基本元器件 - 二极管
目录 二极管的主要参数 二极管的分类 整流二极管 快恢复二极管(FRD) 稳压(齐纳)二级管 瞬态电压抑制器(TVS) 开关二极管 肖特基二极管(SBD) 正偏与反偏 常用封装 伏安特性…...
【设计模式】单例模式(创建型)⭐⭐⭐
1.概念 1.1 什么是单例模式 单例模式属于创建型模式,一个单例类在任何情况下都只存在一个实例, 构造方法必须是私有的、由自己创建一个静态变量存储实例,对外提供一 个静态公有方法获取实例。 1.2 优点与缺点 优点:是内存中只有一个实例&…...
《深入浅出C语言:从基础到指针的全面指南》
1. 简介 C语言是一种通用的编程语言,广泛应用于系统编程、嵌入式系统和高性能应用程序。它由Dennis Ritchie在1972年开发,并且至今仍然非常流行。C语言以其高效、灵活和强大的功能著称,是许多现代编程语言的基础。 2. 基本语法 2.1 Hello, …...
Typescript高级: 深入实践Record类型
概述 Record 类型是TS中其众多强大特性之一它为我们提供了创建键值对映射的强大能力极大地增强了代码的灵活性与类型安全性 应用示例 1 )用于配置场景 在复杂的项目中,配置文件往往包含多个模块的不同设置使用 Record 可以确保配置的键名正确且值类型…...
重构与优化-对象间特性搬移重构(2)
在软件开发过程中,重构是改进代码结构和设计、不改变其外在行为的过程。对象之间的特性搬移(Moving Features Between Objects)是重构的一种重要类型,它涉及到将属性、方法或其他特性从一个对象转移到另一个对象,以优化代码结构、提高可维护性和遵循设计原则。以下是几种典…...
网络流量监控与DNS流量分析
目录 一、网络流量监控的基础知识 什么是网络流量监控? 网络流量监控的重要性 实用案例:如何通过网络流量监控优化带宽利用 二、DNS流量分析的核心要点 什么是DNS流量分析? DNS流量分析的优势 实用技巧:如何通过DNS流量分…...
【数据分析】打造完美数据分析环境:Python开发环境搭建全攻略
打造完美数据分析环境:Python开发环境搭建全攻略 在数据分析的世界中,搭建一个稳定且高效的Python开发环境是至关重要的。本文将介绍三种主要的环境搭建方式:使用pip、Anaconda和Miniconda。 1. 使用pip从清华镜像安装Python包 pip是Pytho…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...
java高级——高阶函数、如何定义一个函数式接口类似stream流的filter
java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用(Math::max) 2 函数接口…...
PCA笔记
✅ 问题本质:为什么让矩阵 TT 的行列式为 1? 这个问题通常出现在我们对数据做**线性变换(旋转/缩放)**的时候,比如在 PCA 中把数据从原始坐标系变换到主成分方向时。 📌 回顾一下背景 在 PCA 中ÿ…...
FTPS、HTTPS、SMTPS以及WebSockets over TLS的概念及其应用场景
一、什么是FTPS? FTPS,英文全称File Transfer Protocol with support for Transport Layer Security (SSL/TLS),安全文件传输协议,是一种对常用的文件传输协议(FTP)添加传输层安全(TLS)和安全套接层(SSL)加密协议支持的扩展协议。…...
Linux——TCP和UDP
一、TCP协议 1.特点 TCP提供的是面向连接、可靠的、字节流服务。 2.编程流程 (1)服务器端的编程流程 ①socket() 方法创建套接字 ②bind()方法指定套接字使用的IP地址和端口。 ③listen()方法用来创建监听队列。 ④accept()方法处理客户端的连接…...
