当前位置: 首页 > news >正文

雪花算法详解及源码分析

雪花算法的简介:

雪花算法用来实现全局唯一ID的业务主键,解决分库分表之后主键的唯一性问题,所以就单从全局唯一性来说,其实有很多的解决方法,比如说UUID、数据库的全局表的自增ID

但是在实际的开发过程中,我们的id除了唯一性以外,还需要去满足有序递增,高性能,高可用,以及需要时间戳等这样一些特征,而雪花算法就是一个比较符合这个一类特征的全局唯一算法。

雪花算法结构的详解:

它是一个通过64个bit位 组成的一个long类型的数字,可以将它分为四个部分,根据这四个部分的规则,生成对应的bit位的一个数据,然后组装在一起,形成一个全局的唯一id。

第一部分:是一个bit:这个是正负号,正常情况下为零,通常无意义

1)不用 1bit:是不用的

因为二进制里第一个bit位如果是1,那么都是复数,但是我们生成的id都是正数,所以第一个bit统一都是0

第二部分:是41个bit:表示的是时间戳

2)时间戳 41bit:表示的是时间戳,单位是毫秒

41bit表示的数字多达2^41-1,也就是可以标识2^41-1个毫秒值,换算成年表示就是69年的时间。

第三、四部分:是5+5个bit:表示的是机房id以及机器id、

3)+4)工作机器Id 10bit:记录工作机器的id,表示的是这个服务最多可以部署在2^10台机器上,也就是1024台机器。

但是10bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2^个机房(32个机房),每个机房可以代表2^5和机器(32台机器),也可以根据实际情况确定

第五部分:是12个bit:表示的序号,就是某个机房中某个机器上这一毫秒内同时生成的id的序号,0000 0000 0000

12bit可以代表的最大正整数是2^12-1=4096,也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id。

源码:

public class SnowFlakeUtil01 {// 起始时间戳 (可以自定义)private final long twepoch = 1288834974657L;// 机器ID所占的位数private final long workerIdBits = 5L;// 数据中心ID所占的位数private final long datacenterIdBits = 5L;// 支持的最大机器ID,结果是31 (这个移位算法可以计算最大值:-1L ^ (-1L << workerIdBits))private final long maxWorkerId = -1L ^ (-1L << workerIdBits);// 支持的最大数据中心ID,结果是31private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);// 序列在ID中占的位数private final long sequenceBits = 12L;// 机器ID左移位数private final long workerIdShift = sequenceBits;// 数据中心ID左移位数private final long datacenterIdShift = sequenceBits + workerIdBits;// 时间戳左移位数private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;// 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)private final long sequenceMask = -1L ^ (-1L << sequenceBits);// 工作机器ID(0~31)private long workerId;// 数据中心ID(0~31)private long datacenterId;// 毫秒内序列(0~4095)private long sequence = 0L;// 上次生成ID的时间戳private long lastTimestamp = -1L;// 构造函数public SnowFlakeUtil01(long workerId, long datacenterId) {// 检查workerId是否在合法范围内if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}// 检查datacenterId是否在合法范围内if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;}/*** 获得下一个ID (该方法是线程安全的)* @return SnowflakeId*/public synchronized long nextId() {long timestamp = timeGen();// 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}// 如果是同一时间生成的,则进行毫秒内序列if (lastTimestamp == timestamp) {// 如果毫秒相同,则从0递增生成序列号sequence = (sequence + 1) & sequenceMask;// 毫秒内序列溢出if (sequence == 0) {// 阻塞到下一个毫秒,获得新的时间戳timestamp = tilNextMillis(lastTimestamp);}}// 时间戳改变,毫秒内序列重置else {sequence = 0L;}// 上次生成ID的时间戳lastTimestamp = timestamp;// 移位并通过或运算拼到一起组成64位的IDreturn ((timestamp - twepoch) << timestampLeftShift) // 时间戳部分| (datacenterId << datacenterIdShift)       // 数据中心部分| (workerId << workerIdShift)               // 机器ID部分| sequence;                                 // 序列号部分}// 阻塞到下一个毫秒,直到获得新的时间戳protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}// 返回当前时间,以毫秒为单位protected long timeGen() {return System.currentTimeMillis();}//    public static void main(String[] args) {
//        SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil(0, 0);
//        for (int i = 0; i < 100; i++) {
//            long id = snowFlakeUtil.nextId();
//            System.out.println(id);
//        }
//    }
}

相关文章:

雪花算法详解及源码分析

雪花算法的简介&#xff1a; 雪花算法用来实现全局唯一ID的业务主键&#xff0c;解决分库分表之后主键的唯一性问题&#xff0c;所以就单从全局唯一性来说&#xff0c;其实有很多的解决方法&#xff0c;比如说UUID、数据库的全局表的自增ID 但是在实际的开发过程中&#xff0…...

Golang TCP网络编程

文章目录 网络编程介绍TCP网络编程服务器监听客户端连接服务器服务端获取连接向连接中写入数据从连接中读取数据关闭连接/监听器 简易的TCP回声服务器效果展示服务端处理逻辑客户端处理逻辑 网络编程介绍 网络编程介绍 网络编程是指通过计算机网络实现程序间通信的一种编程技术…...

先进制造aps专题十 aps项目成功指南

aps项目成功指南 为了保证aps项目的成功 现在国内的aps项目 一是看aps软件本身是不是实现了复杂的排程算法和优化算法&#xff0c;算法引擎使用c高性能编译语言开发&#xff0c;支持工序的复杂关系&#xff0c;考虑副资源约束和特殊规格约束&#xff0c;提供了能考虑各种约束…...

实现Dropdown下拉菜单监听键盘上下键选中功能-React

用过ant design的小伙伴都知道&#xff0c;select组件是支持联想搜索跟上下键选中的效果的&#xff0c;但是在项目中我们可能会遇到用select组件无法实现我们的需求的情况&#xff0c;比如说一个div框&#xff0c;里面有input&#xff0c;又有tag标签&#xff0c;在input中输入…...

Ubuntu系统升级k8s节点的node节点遇到的问题

从1.23版本升级到1.28版本 node节点的是Ubuntu系统20.04的版本 Q1 node节点版本1.23升级1.28失败 解决办法&#xff1a; # 改为阿里云镜像 vim /etc/apt/sources.list.d/kubernetes.list# 新增 deb https://mirrors.aliyun.com/kubernetes/apt/ kubernetes-xenial main# 执…...

前端将DOM元素导出为图片

前端工作中经常会用到把一些元素导出&#xff0c;比如表格&#xff0c;正好项目有遇到导出为excel和导出为图片&#xff0c;就都封装实现了一下&#xff0c;以供其他需求的开发者使用&#xff1a; 1.导出为文档 这个说白了就是下载的功能&#xff0c;传过去检索参数&#xff…...

变现 5w+,一个被严重低估的 AI 蓝海赛道,居然用这个免费的AI绘画工具就能做!

大家好&#xff0c;我是画画的小强&#xff0c;致力于分享各类的 AI 工具&#xff0c;包括 AI 绘画工具、AI 视频工具、AI 写作工具等等。 但单纯地为了学而学&#xff0c;是没有任何意义的。 这些 AI 工具&#xff0c;学会了&#xff0c;用起来&#xff0c;才能发挥出他们的…...

Ubuntu server 24 (Linux) 安装部署smartdns 搭建智能DNS服务器

SmartDNS是推荐本地运行的DNS服务器&#xff0c;SmartDNS接受本地客户端的DNS查询请求&#xff0c;从多个上游DNS服务器获取DNS查询结果&#xff0c;并将访问速度最快的结果返回给客户端&#xff0c;提高网络访问速度和准确性。 支持指定域名IP地址&#xff0c;达到禁止过滤的效…...

正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-24.5,6 SPI驱动实验-ICM20608 ADC采样值

前言&#xff1a; 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM&#xff08;MX6U&#xff09;裸机篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…...

安装vllm的时候卡主:Collecting vllm-nccl-cu12<2.19,>=2.18 (from vllm)

按照vllm的时候卡主&#xff1a; ... Requirement already satisfied: typing-extensions in /home/wangguisen/miniconda3/lib/python3.10/site-packages (from vllm) (4.9.0) Requirement already satisfied: filelock>3.10.4 in /home/wangguisen/miniconda3/lib/python…...

O2O : Finetuning Offline World Models in the Real World

CoRL 2023 Oral paper code Intro 算法基于TD-MPC&#xff0c;利用离线数据训练世界模型&#xff0c;然后在线融合基于集成Q的不确定性估计实现Planning。得到的在线数据将联合离线数据共同训练目标策略。 Method TD-MPC TD-MPC由五部分构成: 状态特征提取 z h θ ( s ) …...

嵌入式学习(Day:31 网络编程2:TCP)

client, server browser b/s http p2p peer TCP的特征&#xff1a;1.有链接&#xff1b;2.可靠传输&#xff1b;3.流式套接字 1、模式 C/S 模式 》服务器/客户端模型&#xff08;服务端1个&#xff0c;客户端很多个&#xff09; server:socket()-->bind()---…...

正则表达式 0.1v

正则表达式 扩展 --> :% s/\///g //文件里面所有的 / 去掉 * 通配符 \ //转义&#xff0c;让字符变成原本的意思 ^ //行首 $ //行尾 [0-9] //数字 [a-z] //小写字母 [A-Z] //大写字母 把文件的小写字母替换为大写字母&#xff1f; 固定写法 :% s/[a-…...

免费的仓库出入库管理软件有哪些?

中小企业因为预算有限&#xff0c;所以希望能在出入库管理软件方面能够减少成本。 但我们必须清醒地认识到&#xff0c;所谓的“永久免费”往往只是一个幌子。这些软件要么是新上市的、功能尚未完善的产品&#xff0c;试图通过免费吸引用户试用&#xff1b;要么在数据安全和客…...

python 办公自动化-生成ppt文本和图

最终样式 代码实现 # 可编辑折线写入文字 成功 # 问题&#xff1a; 设置字体类型和加粗和字体为微软雅黑&#xff0c;是只改了字母和数字的字体&#xff0c;中文没变化 pip install pptx_ea_font 这个库可以解决这个问题 import pandas as pd import pptx_ea_font import mat…...

「动态规划」买卖股票的最佳时机

力扣原题链接&#xff0c;点击跳转。 给定一个整数数组prices&#xff0c;prices[i]表示股票在第i天的价格。你最多完成2笔交易。你不能同时参与多笔交易&#xff08;你必须在再次购买前出售掉之前的股票&#xff09;。设计一个算法计算最大利润。 我们用动态规划的思想来解决…...

Java 并发编程面试二

目录 一、并发编程三要素? 二、实现可见性的方法有哪些? 三、多线程的价值? 四、创建线程的有哪些方式? 五、创建线程的三种方式的对比? 六、Java 线程具有五中基本状态 七、什么是线程池?有哪几种创建方式 八、四种线程池的创建 九、线程池的优点? 十、常用的…...

成功解决“ModuleNotFoundError: No Module Named ‘utils’”错误的全面指南

成功解决“ModuleNotFoundError: No Module Named ‘utils’”错误的全面指南 在Python编程中&#xff0c;遇到ModuleNotFoundError: No Module Named utils这样的错误通常意味着Python解释器无法找到名为utils的模块。这可能是由于多种原因造成的&#xff0c;比如模块确实不存…...

Nvidia Jetson/Orin +FPGA+AI大算力边缘计算盒子:公路智能巡检解决方案

项目背景 中国公路网络庞大&#xff0c;总里程超过535万公里&#xff0c;高速公路里程位居世界前列。面对基础设施存量的不断增长&#xff0c;公路养护管理已迈入“建管养并重”的新时代。随着养护支出的逐年攀升&#xff0c;如何提升养护效率、降低管理成本&#xff0c;成为亟…...

【Maxcompute】geohash转经纬度,经纬度转geohash,计算geohash九宫格

1.梳理、总结经纬度处理在Maxcompute平台上的实战应用,如geohash转经纬度,经纬度转geohash,计算geohash九宫格等。 2.欢迎批评指正,跪谢一键三连! 文章目录 1.部署代码1.部署代码 部署至Maxcompute(ODPS)-DataWorks平台,去掉代码注释即可#coding:utf-8 # from odps.udf…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...