当前位置: 首页 > news >正文

【二叉树】Leetcode 222. 完全二叉树的节点个数【简单】

完全二叉树的节点个数

  • 你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:
在这里插入图片描述
输入: root = [1,2,3,4,5,6]
输出: 6

解题思路

树的高度:

  • 计算树的高度可以在 O(log n) 时间内完成,通过沿着左子树一直走到底。

完全二叉树的性质

  • 对于完全二叉树,如果左右子树的高度相同,那么左子树一定是满二叉树,可以直接计算其节点数;
  • 如果左右子树的高度不同,那么右子树一定是满二叉树。

递归计算:

  • 根据左右子树的高度关系,递归地计算左右子树的节点数,直到叶节点。

Java实现

public class CountNodes {public static class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }}/** 二叉树的节点数 */public int countNodes(TreeNode root) {if (root == null) {return 0;}int leftDepth = computeDepth(root.left);int rightDepth = computeDepth(root.right);if (leftDepth == rightDepth) {// 左子树是满二叉树return (1 << leftDepth) + countNodes(root.right);} else {// 右子树是满二叉树return (1 << rightDepth) + countNodes(root.left);}}/** 二叉树的深度 */private int computeDepth(TreeNode node) {int depth = 0;while (node != null) {node = node.left;depth++;}return depth;}public static void main(String[] args) {CountNodes countNodes = new CountNodes();// 构建示例完全二叉树TreeNode root = new TreeNode(1);root.left = new TreeNode(2);root.right = new TreeNode(3);root.left.left = new TreeNode(4);root.left.right = new TreeNode(5);root.right.left = new TreeNode(6);// 计算完全二叉树的节点个数int result = countNodes.countNodes(root);System.out.println("Number of nodes: " + result);  // 输出: 6}
}

时间空间复杂度

  • 时间复杂度:O(log n * log n),每次递归调用都减少一半节点,递归的次数logn,且需要计算树的高度logn。
  • 空间复杂度:O(log n),递归栈的深度等于树的高度。

相关文章:

【二叉树】Leetcode 222. 完全二叉树的节点个数【简单】

完全二叉树的节点个数 你一棵 完全二叉树 的根节点 root &#xff0c;求出该树的节点个数。 完全二叉树 的定义如下&#xff1a;在完全二叉树中&#xff0c;除了最底层节点可能没填满外&#xff0c;其余每层节点数都达到最大值&#xff0c;并且最下面一层的节点都集中在该层最…...

golang界面设计器,全网少见

今天登录govcl的网站&#xff0c;无意中看到有个简易UI设计器。 对于golang的UI专用设计器&#xff0c;还没在网上真正见过。 之前也用govcl来做过两三个桌面应用&#xff0c;好用是好用&#xff0c;不过要安装Lazarus的IDE来拖动设计UI&#xff0c;还要配置很多东西&#xff0…...

如何在GlobalMapper中加载高清卫星影像?

GlobalMapper在GIS行业几乎无人不知&#xff0c;无人不晓&#xff0c;但它可以直接加载卫星影像也许就不是每个人都知道的了。 这里就来分享一下如何在GlobalMapper中加载高清卫星影像&#xff0c;并可以在文末查看领取软件安装包和图源的方法。 如何加载高清图源 首先&…...

【机器学习】解锁AI密码:神经网络算法详解与前沿探索

&#x1f440;传送门&#x1f440; &#x1f50d;引言&#x1f340;神经网络的基本原理&#x1f680;神经网络的结构&#x1f4d5;神经网络的训练过程&#x1f686;神经网络的应用实例&#x1f496;未来发展趋势&#x1f496;结语 &#x1f50d;引言 随着人工智能技术的飞速发…...

Java如何实现pdf转base64以及怎么反转?

问题需求 今天在做发送邮件功能的时候&#xff0c;发现邮件的附件部分&#xff0c;比如pdf文档&#xff0c;要求先把pdf转为base64&#xff0c;邮件才会发送。那接下来就先看看Java 如何把 pdf文档转为base64。 两种方式&#xff0c;一种是通过插件 jar 包的方式引入&#xf…...

动态规划5:62. 不同路径

动态规划解题步骤&#xff1a; 1.确定状态表示&#xff1a;dp[i]是什么 2.确定状态转移方程&#xff1a;dp[i]等于什么 3.初始化&#xff1a;确保状态转移方程不越界 4.确定填表顺序&#xff1a;根据状态转移方程即可确定填表顺序 5.确定返回值 题目链接&#xff1a;62. …...

Python编程学习第一篇——Python零基础快速入门(五)-列表(List)

今天我们来一起学习Python的列表&#xff08;list&#xff09;&#xff0c;Python中的列表&#xff08;List&#xff09;是一种有序、可变的数据结构&#xff0c;可以用来存储多个值。列表可以包含不同类型的数据&#xff0c;例如整数、浮点数、字符串等。以下是关于Python列表…...

c# - 运算符 << 不能应用于 long 和 long 类型的操作数

Compiler Error CS0019 c# - 运算符 << 不能应用于 long 和 long 类型的操作数 处理方法 特此记录 anlog 2024年5月30日...

问题排查|记录一次基于mymuduo库开发的服务器错误排查(回响服务器无法正常工作)

问题背景&#xff1a; 服务器程序如下&#xff1a; #include <mymuduo/TcpServer.h> #include <mymuduo/Logger.h>#include <string> #include <functional>class EchoServer { public:EchoServer(EventLoop *loop,const InetAddress &addr, con…...

中介模式实现聊天室

中介者模式的核心逻辑就是解耦对象‘多对多’的相互依赖关系。当遇到一大堆混乱的对象呈现“网状结构”&#xff0c;利用通过中介者模式解耦对象之间的通讯。 代码案例 抽象中介类 public abstract class AbstractChatRoom {public abstract void notice(String message , Us…...

游戏开发与游戏设计区别

游戏设计与游戏开发是两个紧密相关但有着不同重点的领域&#xff0c;通常需要不同的技能和流程。以下是对游戏设计与游戏开发的详细解释&#xff0c;以及两者的区别&#xff1a; 游戏设计是关于构思和规划游戏的内容、机制和体验的过程。 主要内容: 故事和情节&#xff1a;构…...

卡尔曼滤波算法的matlab实现

卡尔曼滤波算法的matlab实现 figure; hold on;Z(1:1:100); %观测值&#xff1a;第一秒观测1m 第二秒观测两米 匀速运动, 每秒1m, 最后拟合的也是速度 1m/splot(Z); plot([0,100], [1,1]);noiserandn(1,100)*0.5; %生成方差为1的高斯噪声 ZZnoise; % 加入噪声plot(Z);X[0;…...

Unity Obi Rope失效

文章目录 前言一、WebGL端Obi Rope失效二、Obi Rope 固定不牢三、使用Obi后卡顿总结 前言 Obi 是一款基于粒子的高级物理引擎&#xff0c;可模拟各种可变形材料的行为。 使用 Obi Rope&#xff0c;你可以在几秒内创建绳索和杆子&#xff0c;同时完全控制它们的形状和行为&…...

基于Nginx和Consul构建自动发现的Docker服务架构——非常之详细

基于Nginx和Consul构建自动发现的Docker服务架构 文章目录 基于Nginx和Consul构建自动发现的Docker服务架构资源列表基础环境一、安装Docker1.1、Consul节点安装1.2、registrator节点安装 二、案例前知识点2.1、什么是Consul 三、基于Nginx和Consul构建自动发现的Docker服务架构…...

Gnu/Linux 系统编程 - 如何获取帮助及一个演示

Gnu/Linux 系统编程 - 如何获取帮助及一个演示 今天开始写 Gnu/Linux 环境下的系统编程&#xff0c;主要的用的语言是 C&#xff0c;主要是为了学习 C 语言&#xff0c;边学边写&#xff0c;这样的学习速度是比较快的。 今天就先介绍下如何在手头上没有任何资料的情况下&…...

ffmpeg 的sws_scale接口函数解析

ffmpeg 的 sws_scale 函数是 libswscale 库中的一个重要函数&#xff0c;用于进行图像的缩放和颜色空间转换。它的主要作用是将输入图像帧转换为另一种尺寸或颜色格式的输出图像帧。下面详细解析一下 sws_scale 函数的作用、参数等。 sws_scale 函数的作用 ffmpeg 的 sws_sca…...

MoonBit 本周新增类型标注语法、继续进行核心库 API 整理工作

MoonBit更新 类型标注增加了新的语法T? 来表示Option[T] struct Cell[T] {val: Tnext: Cell[T]? }fn f(x : Cell[T]?) -> Unit { ... }相当于 struct Cell[T] {val: Tnext: Option[Cell[T]] }fn f(x : Option[Cell[T]]) -> Unit { ... }旧的Option[T]仍然兼容&…...

YOLOv10训练自己的数据集

目录 0、引言 1、环境配置 2、数据集准备 3、创建配置文件 3.1、设置官方配置文件&#xff1a;default.yaml&#xff0c;可自行修改。 3.2、设置data.yaml 4、进行训练 4.1、方法一 4.2、方法二 5、验证模型 5.1、命令行输入 5.2、脚本运行 6、总结 0、引言 本文…...

探索Web前端三大主流框架:Angular、React和Vue.js

探索Web前端三大主流框架&#xff1a;Angular、React和Vue.js 在现代Web开发中&#xff0c;前端框架已经成为开发者构建复杂应用的重要工具。Angular、React和Vue.js是目前最受欢迎的三大前端框架&#xff0c;它们各具特色&#xff0c;适用于不同的开发需求。本文将详细介绍这…...

《HelloGitHub》第 98 期

兴趣是最好的老师&#xff0c;HelloGitHub 让你对编程感兴趣&#xff01; 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等&#xff0c;涵盖多种编程语言 Python、…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址&#xff0c;您可以使用以下几种方法&#xff1a; 1. 查看所有远程仓库地址 使用 git remote -v 命令&#xff0c;它会显示项目中配置的所有远程仓库及其对应的 URL&#xff1a; git remote -v输出示例&#xff1a; origin https://…...