YOLOv10训练自己的数据集
目录
0、引言
1、环境配置
2、数据集准备
3、创建配置文件
3.1、设置官方配置文件:default.yaml,可自行修改。
3.2、设置data.yaml
4、进行训练
4.1、方法一
4.2、方法二
5、验证模型
5.1、命令行输入
5.2、脚本运行
6、总结
0、引言
本文是使用YOLOv10训练自己的数据集,数据集包含COCO数据集的人猫狗数据以及自己制作的人猫狗数据集,类别为0:person、1:cat、2:dog三类,大家可根据自己的数据集类别进行调整。
1、环境配置
打开Anaconda3终端,进入base环境,创建新环境
conda create -n yolov10 python=3.9
conda activate yolov10
#cd到yolov10的目录下
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install -e .

2、数据集准备
YOLOv10的训练数据集格式与YOLOv8相同
mydata
______images
____________train
_________________001.jpg
____________val
_________________002.jpg
______labels
____________train
_________________001.txt
____________val
_________________002.txt
参照这篇博客的数据集准备即可:
YOLOv8-Detect训练CoCo数据集+自己的数据集_yolov8训练coco-CSDN博客
3、创建配置文件
3.1、设置官方配置文件:default.yaml,可自行修改。

3.2、设置data.yaml
根据自己的数据集位置进行修改和配置。
path: D:\Yolov8\ultralytics-main\datasets\mydata # dataset root dir
train: images/train # train images (relative to 'path') 118287 images
val: images/val # val images (relative to 'path') 5000 images
#test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794# Classes
names:0: person1: cat2: dog
nc: 3
4、进行训练
上述步骤完成后,即可开始训练。
4.1、方法一
通过命令直接进行训练在其中指定参数,命令如下:
data.yaml根据实际路径而来
yolo detect train model=yolov10s.yaml data=data.yaml batch=16 epochs=100 imgsz=640
yolo detect train model=yolov10s.pt data=data.yaml batch=16 epochs=100 imgsz=640
4.2、方法二
通过创建py文件来进行训练
from ultralytics import YOLOv10#数据集配置文件
data_yaml_path = r'D:\Yolov10\yolov10-main\yolov10-detect\data.yaml'
#预训练模型
pre_model_name = r'D:\Yolov10\yolov10-main\yolov10-detect\yolov10s.pt'if __name__ == '__main__':#加载预训练模型model = YOLOv10(pre_model_name)#训练生成的文件保存路径名savename = 'train_yolov10s'#训练模型results = model.train(data=data_yaml_path,epochs=10,name=savename)
也可以使用yaml文件
from ultralytics import YOLOv10#数据集配置文件
data_yaml_path = r'D:\Yolov10\yolov10-main\yolov10-detect\data.yaml'
#预训练模型
pre_model_name = r'D:\Yolov10\yolov10-main\ultralytics\cfg\models\v10\yolov10s.yaml'if __name__ == '__main__':#加载预训练模型model = YOLOv10(pre_model_name)#训练生成的文件保存路径名savename = 'train_yolov10s'#训练模型results = model.train(data=data_yaml_path,epochs=10,name=savename)
注意修改类

训练过程(我这里后面多加了一类所以是4):



训练过程中会保存以下内容,最后得到两个模型分别是:best.pt、last.pt


5、验证模型
训练进程完毕以后可使用一些验证数据进行模型验证,查看模型的识别效果。
5.1、命令行输入
yolo predict model=best.pt source='D:\Yolov10\yolov10-main\yolov10-detect\Testsets\test1'
5.2、脚本运行
from ultralytics import YOLOv10
import glob
import os
import numpy as np
import cv2classes = {0: 'person', 1: 'cat', 2: 'dog', 3: 'backpack'
}
class Colors:"""Ultralytics color palette https://ultralytics.com/."""def __init__(self):"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB','2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')self.palette = [self.hex2rgb(f'#{c}') for c in hexs]# print(self.palette)self.n = len(self.palette)def __call__(self, i, bgr=False):"""Converts hex color codes to rgb values."""c = self.palette[int(i) % self.n]return (c[2], c[1], c[0]) if bgr else c@staticmethoddef hex2rgb(h): # rgb order (PIL)return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))colors = Colors() # create instance for 'from utils.plots import colors'#预测的图片路径
imgpath = r'D:\Yolov10\yolov10-main\yolov10-detect\Testsets\test1'
#模型路径
modelpath = r'D:\Yolov10\yolov10-main\yolov10-detect\runs\detect\weights\best.pt'
#保存结果的路径
save_dir = imgpath + '_Rst'
os.makedirs(save_dir,exist_ok=True)
model = YOLOv10(modelpath)imgs = glob.glob(os.path.join(imgpath,'*.jpg'))
for img in imgs:imgname = img.split('\\')[-1]frame = cv2.imread(img)results = model.predict(img)[0]# results = model(img)for box in results.boxes:# print(box)xyxy = box.xyxy.squeeze().tolist()x1, y1, x2, y2 = int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])c, conf = int(box.cls), float(box.conf)name = classes[c]color = colors(c, True)cv2.rectangle(frame, (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])), color, thickness=2, lineType=cv2.LINE_AA)cv2.putText(frame, f"{name}: {conf:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, color,2)# cv2.imshow('image', frame)# cv2.waitKey(0)cv2.imwrite(save_dir+'\\'+imgname,frame)

6、总结
至此,整个YOLOv10的训练预测阶段完成,与YOLOv8差不多。
欢迎各位批评指正。
相关文章:
YOLOv10训练自己的数据集
目录 0、引言 1、环境配置 2、数据集准备 3、创建配置文件 3.1、设置官方配置文件:default.yaml,可自行修改。 3.2、设置data.yaml 4、进行训练 4.1、方法一 4.2、方法二 5、验证模型 5.1、命令行输入 5.2、脚本运行 6、总结 0、引言 本文…...
探索Web前端三大主流框架:Angular、React和Vue.js
探索Web前端三大主流框架:Angular、React和Vue.js 在现代Web开发中,前端框架已经成为开发者构建复杂应用的重要工具。Angular、React和Vue.js是目前最受欢迎的三大前端框架,它们各具特色,适用于不同的开发需求。本文将详细介绍这…...
《HelloGitHub》第 98 期
兴趣是最好的老师,HelloGitHub 让你对编程感兴趣! 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等,涵盖多种编程语言 Python、…...
Xtransfer面试内容
一、Xtransfer一轮面试内容 1.进程间的通信方式 2.redis的故障转移是如何选举主节点的 3.redis快的原因 4.redis、ES、mysql选型的场景 5.redis项目的挑战和难点 6.redis和ZK各自的应用场景 7.ZK选举的算法 8.socket建立连接的过程,与TCP是一回事吗? So…...
论文笔记:Image Anaimation经典论文-运动关键点模型(Monkey-Net)
Monkey-Net(MOviNg KEYpoints) paper: https://arxiv.org/pdf/1812.08861, CVPR 2019 code: https://github.com/AliaksandrSiarohin/monkey-net/tree/master 相关工作 视频生成演变过程: spatio-temporal network: 如基于GAN网络的生成模…...
Kibana创建ElasticSearch 用户角色
文章目录 1, ES 权限参考2, 某应用的管理员权限:可以open/close/delete/cat/read/write 索引3, 某应用的读写权限:可以cat/read/write 索引 (不能删除索引或数据)4, 某应用的只读权限 1, ES 权限参考 https://www.elastic.co/gui…...
Vue基础(2)响应式基础
一. reactive() 在 Vue3 中,可以使用 reactive() 创建一个响应式对象或数组: <script setup> import { reactive } from vueconst state reactive({ count: 0 }) </script><template><button click"state.count">{…...
Mysql基础教程(15):别名
MySQL 别名 在本文中,我们讨论了 MySQL 中的列别名,表别名和派生表别名,以及使用别名来简化 SQL 和提高 SQL 的可读性。 如果在一个 SQL 中涉及到多个表,我们需要使用 table_name.column_name 这样的方式来引用每个表的字段&…...
SpringCloud 微服务中网关如何记录请求响应日志?
在基于SpringCloud开发的微服务中,我们一般会选择在网关层记录请求和响应日志,并将其收集到ELK中用作查询和分析。 今天我们就来看看如何实现此功能。 日志实体类 首先我们在网关中定义一个日志实体,用于组装日志对象 Data public class …...
【运维项目经历|028】Cobbler自动化部署平台构建项目
🍁博主简介: 🏅云计算领域优质创作者 🏅2022年CSDN新星计划python赛道第一名 🏅2022年CSDN原力计划优质作者 🏅阿里云ACE认证高级工程师 🏅阿里云开发者社区专…...
“物联网安全:万物互联背景下的隐私保护与数据安全策略“
在物联网(IoT)时代,随着智能设备的普及和万物互联的加速,隐私保护与数据安全成为了亟待解决的关键问题。以下是一些重要的隐私保护与数据安全策略,以确保在万物互联背景下信息的安全: 1. 加强设备安全&…...
LeetCode216组合总和3
题目描述 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:只使用数字1到9。每个数字 最多使用一次。返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。 解析 递归加剪枝,搜索长度达…...
微软找腾讯接盘,Windows直接安装手机APP体验起飞了
熟悉微软的同学都知道微软有个传统艺能——什么好用砍什么。 比如 Win10 砍掉了还算方便的小娜,推出 Win11 砍掉了 Win10 上面好用的磁贴功能等。 上一秒用户还在夸奖点赞。 下一秒就给你砍掉,顺带还塞一堆 BUG 给你。 但没办法,PC 近乎垄断…...
【Springcloud微服务】MybatisPlus下篇
🔥 本文由 程序喵正在路上 原创,CSDN首发! 💖 系列专栏:Springcloud微服务 🌠 首发时间:2024年6月4日 🦋 欢迎关注🖱点赞👍收藏🌟留言ὃ…...
i18n-demo
一、demo 1、资源文件准备 如我需要对menu、logMsg内容做国际化。 resources下放各个语言文件,直接放resources下都行。我是新建了一个myi18n文件夹, (1)然后在myi18n上点击New--Resource Bundle (2)在…...
[Leetcode] 0-1背包和完全背包
46. 携带研究材料 纯01背包(非应用):只能选择一次物品 dp[j]:容量为j的背包所能装的最大容量 容量需要倒序 416. 分割等和子集 能否装满 dp[j]:容量为j的背包所能装的最大容量 1049. 最后一块石头的重量 II 尽可…...
自定义类型:联合体和枚举
1. 联合体类型的声明 2. 联合体的特点 3. 联合体大小的计算 4. 枚举类型的声明 5. 枚举类型的优点 6. 枚举类型的使用 欢迎关注 熬夜学编程 创作不易,请多多支持 感谢大家的阅读、点赞、收藏和关注 如有问题,欢迎指正 1. 联合体 1.1 联合体类型的声…...
【Cityengine】Cityengine生产带纹理的建筑模型导入UE4/UE5(下)
【Cityengine】Cityengine生产带纹理的建筑模型导入UE4/UE5(下) 一、导出数据(2022中文版案例)二、安装datasmith插件三、导入数据四、检查导入材质是否正常五、编辑替换材质六、安装模型编辑插件七、编辑替换建筑规则 一、导出数…...
详解51种企业应用架构模式
导读:企业应用包括哪些?它们又分别有哪些架构模式?世界著名软件开发大师Martin Fowler给你答案 01、什么是企业应用 我的职业生涯专注于企业应用,因此,这里所谈及的模式也都是关于企业应用的。(企业应用还…...
【十年java搬砖路】Jumpserver docker版安装及配置Ldap登陆认证
Jumpserver docker 安装启动教程 拉取镜像 docker pull JumpServer启动进行前确保有Redis 和Mysql 创建jumperServer数据库 在MYSQL上执行 创建数据库 登陆MYSQL mysql -u root -p 创建Jumperserveri库 create database jumpserver default charset utf8mb4;可以为jumperSe…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
