【WRF理论第二期】模型目录介绍
WRF理论第二期:模型目录介绍
- 1 WRF主目录
- 2 WPS主目录
- 3 编译后的可执行文件
- 4 运行目录
- 参考
了解 WRF 模型的目录结构有助于有效地管理和操作模型,从而确保模拟和分析工作的顺利进行。以下分解介绍WRF主目录、WPS主目录等。
Github-wrf-model/WRF
1 WRF主目录
安装 WRF 模型后,通常会在特定目录下形成一系列文件和子目录,这些目录结构帮助用户组织和管理 WRF 相关的文件。
WRF 主目录包含模型的源代码、可执行文件、配置文件和运行所需的各种脚本。通常包括以下几个主要子目录:
WRF/
├── arch/
├── chem/
├── clean/
├── compile/
├── configure.wrf
├── dyn_em/
├── dyn_exp/
├── dyn_nmm/
├── dyn_scm/
├── external/
├── frame/
├── main/
├── makefile
├── phys/
├── run/
├── share/
├── tests/
└── tools/
目录和文件说明如下:
- arch/: 包含针对不同架构和编译器的配置文件。
- chem/: 包含大气化学模块的代码。
- clean/: 清理编译生成的临时文件和目录的脚本。
- compile/: 编译过程中生成的中间文件和目录。
- configure.wrf: 配置文件,包含编译和运行的相关参数,是通过运行 ./configure 脚本生成的。
- dyn_em/: 包含ARW(Advanced Research WRF)动力核心的代码。
- dyn_exp/: 实验性动力核心代码(通常不常用)。
- dyn_nmm/: 包含NMM(Nonhydrostatic Mesoscale Model)动力核心的代码。
- dyn_scm/: 单柱模型代码。
- external/: 外部库和依赖项,如 NetCDF 等的包装代码。
- frame/: 包含框架代码和通用模块。
- main/: 主程序代码,编译后生成可执行文件 wrf.exe 等。
- makefile: 顶层 Makefile,用于管理编译过程。
- phys/: 物理参数化方案的代码,包括微物理、辐射、边界层等模块。
- run/: 模拟运行所需的输入文件和示例配置文件。
- share/: 公共代码和实用工具函数。
- tests/: 测试用例和示例脚本。
- tools/: 包含各种辅助工具和实用脚本。
2 WPS主目录
WPS(WRF Preprocessing System)目录包含预处理系统的源代码和运行脚本,通常包括以下几个主要子目录:
WPS/
├── arch/
├── clean/
├── compile/
├── configure.wps
├── geogrid/
├── link_grib.csh
├── metgrid/
├── ungrib/
├── util/
├── var/
└── WPS
目录和文件说明如下:
- arch/: 包含针对不同架构和编译器的配置文件。
- clean/: 清理编译生成的临时文件和目录的脚本。
- compile/: 编译过程中生成的中间文件和目录。
- configure.wps: 配置文件,通过运行 ./configure 脚本生成。
- geogrid/: 处理地理数据的程序和代码。
- link_grib.csh: 用于链接 GRIB 文件的脚本。
- metgrid/: 处理气象数据的程序和代码。
- ungrib/: 解码 GRIB 文件的程序和代码。
- util/: 各种实用工具和脚本。
- var/: 变分数据同化相关的代码。
- WPS: 编译后生成的主可执行文件。
3 编译后的可执行文件
在 WRF 目录中的 main/ 目录下,会生成主要的可执行文件:
- wrf.exe: 主模拟程序。
- real.exe: 用于处理初始和边界条件。
- nup.exe: 用于特定后处理任务。
在 WPS 目录中,会生成以下主要的可执行文件:
- geogrid.exe: 用于生成地理数据。
- ungrib.exe: 用于解码 GRIB 数据。
- metgrid.exe: 用于处理和插值气象数据。
4 运行目录
用户通常会在一个单独的工作目录中运行 WRF 模型,在该目录中包括配置文件、初始条件和边界条件文件等。一个典型的运行目录结构可能如下:
run/
├── namelist.input
├── namelist.wps
├── wrfinput_d01
├── wrfbdy_d01
├── wrfout_d01_*
├── wrf.exe
├── real.exe
└── ...
目录和文件说明如下:
- namelist.input: WRF 模型的配置文件。
- namelist.wps: WPS 系统的配置文件。
- wrfinput_d01: 初始条件文件。
- wrfbdy_d01: 边界条件文件。
- wrfout_d01_*: 模拟输出文件。
- wrf.exe 和 real.exe: 可执行文件,通常从主目录中复制过来。
通过理解和利用上述目录结构,用户可以更高效地管理和运行 WRF 模型的各种任务。
参考
相关文章:

【WRF理论第二期】模型目录介绍
WRF理论第二期:模型目录介绍 1 WRF主目录2 WPS主目录3 编译后的可执行文件4 运行目录参考 了解 WRF 模型的目录结构有助于有效地管理和操作模型,从而确保模拟和分析工作的顺利进行。以下分解介绍WRF主目录、WPS主目录等。 Github-wrf-model/WRF 1 WRF…...

从了解到掌握 Spark 计算框架(一)Spark 简介与基础概念
文章目录 什么是 Spark?核心特点 Spark 对比 MapReduceSpark 编程模型RDDDataFrameDataset Spark 运行模式Spark 生态 什么是 Spark? Spark 是一个基于内存的分布式计算框架,最初由加州大学伯克利分校的 AMPLab 开发,后来捐赠给了…...
linux bind函数
bind函数的目的是让把客户端对应的端口(port)地址和ip地址绑定到客户端 [参考](Linux之bind 函数(详细篇)_linux bind函数-CSDN博客)...

Flink系列一:flink光速入门 (^_^)
引入 spark和flink的区别:在上一个spark专栏中我们了解了spark对数据的处理方式,在 Spark 生态体系中,对于批处理和流处理采用了不同的技术框架,批处理由 Spark-core,SparkSQL 实现,流处理由 Spark Streaming 实现&am…...

PySpark特征工程(III)--特征选择
有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。 特征工程是数据分析…...

Mongodb的数据库简介、docker部署、操作语句以及java应用
Mongodb的数据库简介、docker部署、操作语句以及java应用 本文主要介绍了mongodb的基础概念和特点,以及基于docker的mongodb部署方法,最后介绍了mongodb的常用数据库操作语句(增删改查等)以及java下的常用语句。 一、基础概念 …...

七大战略性新兴产业崭露头角:新能源电燃灶或将成为未来厨房新宠
近日,在国家发布的七大战略性新兴产业名单中,新能源产业赫然在列,作为其中的重要组成部分,华火新能源电燃灶凭借其独特的优势,正逐渐走进人们的视野,有望成为未来厨房的新宠。 华火新能源电燃灶作为清洁能源…...
C#进阶-用于Excel处理的程序集
在.NET开发中,处理Excel文件是一项常见的任务,而有一些优秀的Excel处理包可以帮助开发人员轻松地进行Excel文件的读写、操作和生成。本文介绍了NPOI、EPPlus和Spire.XLS这三个常用的.NET Excel处理包,分别详细介绍了它们的特点、示例代码以及…...
持续总结中!2024年面试必问 20 道 Kafka面试题(五)
上一篇地址:持续总结中!2024年面试必问 20 道 Kafka面试题(四)-CSDN博客 九、请解释Kafka中的Zookeeper的作用。 在Kafka中,ZooKeeper扮演着至关重要的角色,主要负责集群管理、协调和状态同步等功能。以下…...
Draw.io 使用详细教程
Draw.io 是一款功能强大的在线绘图工具,适用于创建流程图、网络图、组织结构图、UML 图等。以下是详细的使用教程,包括基本操作、快捷键、常用技巧和进阶技巧。 1. 创建新图 选择存储位置 首次使用时,系统会询问你要将图保存到哪里。你可以…...

人工智能学习笔记(1):了解sklearn
sklearn 简介 Sklearn是一个基于Python语言的开源机器学习库。全称Scikit-Learn,是建立在诸如NumPy、SciPy和matplotlib等其他Python库之上,为用户提供了一系列高质量的机器学习算法,其典型特点有: 简单有效的工具进行预测数据分…...

PromptPort:为大模型定制的创意AI提示词工具库
PromptPort:为大模型定制的创意AI提示词工具库 随着人工智能技术的飞速发展,大模型在各行各业的应用越来越广泛。而在与大模型交互的过程中,如何提供精准、有效的提示词成为了关键。今天,就为大家介绍一款专为大模型定制的创意AI…...

IDEA升级web项目为maven项目乱码
今天将一个java web项目改造为maven项目。 首先,创建一个新的maven项目,将文件拷贝到新项目中。 其次,将旧项目的jar包,在maven的pom.xml做成依赖 接着,把没有maven坐标的jar包在编译的时候也包含进来 <build>…...

存内计算与扩散模型:下一代视觉AIGC能力提升的关键
目录 前言 视觉AIGC的ChatGPT4.0时代 扩散模型的算力“饥渴症” 存内计算解救算力“饥渴症” 结语 前言 在这个AI技术日新月异的时代,我们正见证着前所未有的创新与变革。尤其是在视觉内容生成领域(AIGC,Artificial Intelligence Generate…...

如何上传模型素材创建3D漫游作品?
一、进入3D空间漫游互动工具编辑器 进入720云官网-点击“开始创作”-选择3D空间漫游-进入到作品创建页面。 二、上传模型及素材,创建生成3D空间漫游模型 1.创建3D空间作品:您可以选择新建空白作品或使用720云提供的预设空间模板,本篇主要介绍…...

NFS p.1 服务器的部署以及客户端与服务端的远程挂载
目录 介绍 应用 NFS的工作原理 NFS的使用 步骤 1、两台机子 2、安装 3、配置文件 4、实验 服务端 准备 启动服务: 客户端 准备 步骤 介绍 NFS(Network File System,网络文件系统)是一种古老的用于在UNIX/Linux主…...

性能工具之 JMeter 常用组件介绍(二)
文章目录 一、Thread Group二、断言组件1、Response Assertion:响应断言2、Response Assertion:响应断言3、Duration Assertion:响应时间断言4.、JSON Assertion:json断言 一、Thread Group 线程组也叫用户组,是性能测…...
Bev 车道标注方案及复杂车道线解决
文章目录 1. 数据采集方案1.1 传感器方案1.2 数据同步2. 标注方案2.1 标注注意项2.2 4d 标注(时序)2.2.1 4d标签制作2.2.2 时序融合的作用2.2.2.1 时序融合方式2.2.2.2 时序融合难点2.2.2.2 时序实际应用情况3. 复杂车道线解决3.1 split 和merge车道线的解决3.2 大曲率或U形车道…...

vue 将echart 下载为base64图片
1 echart是页面的子组件, 2 页面有多个echart 3 将多个echart下载为base64图片 // 子组件 echart,要保存echartconst chart this.$echarts.init(this.$refs.chart, light) this.chartData chart; //保存数据,供父组件alarmReport调用(th…...

视频汇聚EasyCVR平台视图库GA/T 1400协议与GB/T 28181协议的区别
在公安和公共安全领域,视频图像信息的应用日益广泛,尤其是在监控、安防和应急指挥等方面。为了实现视频信息的有效传输、接收和处理,GA/T 1400和GB/T 28181这两个协议被广泛应用。虽然两者都服务于视频信息处理的目的,但它们在实际…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...