当前位置: 首页 > news >正文

生成式人工智能的风险与治理——以ChatGPT为例

文 | 西南政法大学经济法学院 马羽男

以ChatGPT为代表的生成式人工智能在创造社会福利的同时,也带来了诸多风险。因此,当务之急是结合我国生成式人工智能发展状况,厘清其应用价值与潜在风险之间的关系,以便在不影响应用发展的前提下有效化解风险。

生成式人工智能的运行机理主要分为三个阶段,也就是机器学习和人工标记的准备阶段、运用算法对数据进行处理以求出处理后结果的运算阶段、数据运算产出成品向社会输出并产生影响的生成阶段。当前,生成式人工智能最突出的风险就是在准备阶段的数据合规风险、运算阶段的算法偏见风险以及生成阶段的知识产权风险。

准备阶段的数据合规风险。我国当前的数据合规体系是建立在《网络安全法》《数据安全法》《个人信息保护法》之上的,要求数据处理者在处理过程中采取必要措施以保障基本的数据安全、网络安全和个人信息安全。基于我国的法律框架,生成式人工智能的数据合规风险主要体现在三个方面:数据来源合规风险、数据使用合规风险、数据的准确性风险。首先是数据来源合规风险。以 ChatGPT为代表的生成式人工智能,初始阶段往往要采集大量数据以供其训练。基于此,可能会面临如下问题:一是收集个人信息用户是否同意;二是收集使用已公开的信息是否在“合理范围”;三是收集的样本受到版权保护,进行训练时可否被认定为“合理使用”。其次是数据使用合规风险。一方面是数据泄露风险。用户会将个人信息、商业信息甚至商业机密等传输给ChatGPT。分析ChatGPT运行机理不难发现,在迭代训练中,它也会使用用户输入的信息和交互信息。因此,如何保证这些数据的安全是一个很大的难题。另一方面是用户行使个人信息删除权比较困难。虽然 OpenAI的隐私协议中规定了用户对其个人信息享有相关的权利,但是鉴于要求生成式人工智能系统删除数据的复杂特性,开发者能否实现对个人信息的真实删除,从而达到符合法规的要求还存在较大的不确定性。最后是数据的准确性风险。因为在 ChatGPT训练的早期,被投入到数据中的内容是由开发人员从网络中获得和选择的,因此就有可能出现因为数据的缺失或错误等情况而致使所生成内容的不准确。

运行阶段的算法偏见风险。以“人工标注”为辅助的“机器学习”,通过二者的结合,提高了生成式人工智能的智能化与精确性。但是,这也使得算法偏见的概率急剧增加。这种结合方法比传统的机器学习方法更能体现人的主观判断和偏好,这是由于人们将自己的偏好信息加入到机器学习的模型中,从而增加了人们的偏见,并且这种偏见很难被追踪和防范。在对 ChatGPT的运作方式进行分析后发现,算法偏见主要表现为两方面:其一,由于接收到的数据需要人工标注,因此在理解过程中存在着一定的误差。其二,对数据进行加工,当 ChatGPT对数据进行加工得出结论后,由于原始结果与大众期望不一致,需要对之进行修正,但这一过程同样会产生一定程度的算法偏见。

生成阶段的知识产权风险。生成式人工智能的兴起,对众多产业提出了新的挑战,而最具冲击之处,在于在生成阶段对知识产权领域所构成的挑战。因为生成式人工智能具有高度的智能化,所以在运算过程中,与之前的人工智能系统相比,其知识产权的归属发生了颠覆性的变化。ChatGPT是一种生成式人工智能,它在处理和分析数据方面远远强于分析式人工智能,其内容生成过程主要包括内容自动化编纂、智能化修整加工、多模态转换、创意生成等,直接影响着出版的内容生产模式和内容供应模式。尽管ChatGPT的创造者中包含一些自然人的创作因素,从某种意义上来说,更符合作品的构成要件,但这种由生成式人工智能所创造的作品能否被赋权,仍然存在争论,并且具体的赋权认定标准研究还处于空白状态。因此,知识产权风险成为生成式人工智能无法规避的第三大风险。

针对上述生成式人工智能三个方面的风险,建议采取以下三种应对策略来化解风险。

强化生成式人工智能企业的数据合规建设。生成式人工智能的发展不能只重能力和效率而忽视安全,相关企业应当利用良好的数据合规体系来保障数据安全。企业数据合规建设可以通过三个措施强化。其一,确立数据合规原则。其原则主要有四点,分别是合法合规原则、告知同意原则、正当目的原则、最小必要原则。其二,建立数据合规的多元技术机制。首先是宏观层面的行业标准要统一。各行业的主管部门,应该带头建立一个数据版本的“新华辞典”,让数据编码、制式等保持一致,确保数据的来源、内容和处理逻辑能够被“反事实验证”。其次是中观层面的内外审查体系。在内部设立数据合规专门机构,负责企业日常的数据合规处理,在外部引入第三方审查机制,对企业数据合规进行审计和伦理审查。最后是微观层面的伦理规范。将伦理规范与原则以法律形式嵌入到技术应用的行为逻辑中去,使之能够因势而为。其三,完善数据合规相关法律。首先是完善立法,在立法层面加快出台数据、人工智能方面的基本法,以作为企业数据合规法律方面的顶层指导。其次是执法完善,尽快明确各部门的执法权限,避免“多头治理”产生“九龙治水”的局面。最后是完善司法,完善电子证据制度,保障权利人的相关诉权。

技管结合矫正生成式人工智能的算法偏见。这主要包含两个措施。其一,针对生成式人工智能机器学习过程中所出现的先天性算法偏见,应当调整相关算法模型的学习路径,遵守相关规范和技术标准,在生成式人工智能投入市场前应当进行实质审查。鉴于生成式人工智能的特征,可将其纠偏工作分为两个方面:一方面,采用算法程序编译预防机器学习中可能存在的先天偏见;另一方面,设置人工标注的标准,提高从业人员的执业水平以应对人工标注的算法偏见。其二,针对生成式人工智能的自我学习而得出的后天性算法偏见,应当通过建立敏捷化、自动化、全流程的监管体系来消除偏见。首先,实现对算法技术的自动化监管。针对机器学习和人工标注实现自动化监管,每当出现算法偏见时暂停输出结果,返回查找问题根源。其次,建立多元主体监管模式。行政主体、平台、行业协会、企业自身多方主体参与监管。最后,落实全流程敏捷的监管机制。对生成式人工智能产出结论的全过程进行监管,切实降低由于算法偏见导致错误结论的概率,有效推进可信算法体系的构建。

采用有限保护模式,以防范生成式人工智能作品在知识产权方面的风险。相较于传统的人工智能技术,生成式人工智能的创新之处在于其拥有一定程度的自我认知,并且参与了输出结果的加工和创造。如果基于其自我认知,而将其所有成果都进行保护,那么未来可能会出现生成式人工智能公司手握“创作霸权”的局面。但从商业角度而言,生成式人工智能公司耗费大量金钱和技术资本打造高度智能的人工智能程序,如果对该程序衍生的“作品”完全不予保护,也有违公平。因此,对于ChatGPT生成物的知识产权属性,现阶段应该根据其技术运行模式、参与程度、创新程度等进行综合评判,对其产品的知识产权采用有所区分的有限保护模式。等到未来生成式人工智能发展到一定阶段,深入了解其运行机制时,再确定具体的知识产权保护模式。

以ChatGPT为代表的生成式人工智能方兴未艾,它所带来的法律风险,很多都应在既有法律框架内妥善应对。面对风险和问题,不能因为产业有风险和理论有争议,就限制生成式人工智能发展。这需要采取“法律+技术”的融合治理来营造一个好的市场环境,保障生成式人工智能市场茁壮成长。

【本文系国家社科基金一般项目“个人信息的竞争法保护疑难问题研究”(23BFX186)阶段性成果】

(来源:中国社会科学网)

相关文章:

生成式人工智能的风险与治理——以ChatGPT为例

文 | 西南政法大学经济法学院 马羽男 以ChatGPT为代表的生成式人工智能在创造社会福利的同时,也带来了诸多风险。因此,当务之急是结合我国生成式人工智能发展状况,厘清其应用价值与潜在风险之间的关系,以便在不影响应用发展的前提…...

十足正式在山东开疆拓土!首批店7月初开业,地区便利店现全新面貌!

十足便利店将正式进军山东市场,以济南、淄博两座城市为核心发展起点,目前济南市已经有三家十足门店正在装修施工中,首批15家门店将于7月初开业,这标志着十足集团市场战略布局迈出了至关重要的一步。 随着3月份罗森品牌在济南成功开…...

Unity2D游戏开发-玩家控制

在Unity2D游戏开发中,玩家控制是游戏互动性的核心。本文将解析一个典型的Unity2D玩家控制脚本,探讨如何实现流畅的玩家移动、跳跃和动画切换。以下是一个Unity脚本示例,实现了这些基础功能。 1. 脚本结构 using System.Collections; using …...

如何在 Windows 11 上免费恢复永久删除的文件

虽然Windows 上的已删除文件恢复不简单,但您可能希望免费或无需任何软件即可恢复已删除的文件。下面,我们列出了一个指南,其中包含有关如何在 Windows 11 上免费检索永久删除的文件的说明。 #1 奇客数据恢复 奇客数据恢复是一个广受好评的免…...

Spring boot 集成mybatis-plus

Spring boot 集成mybatis-plus 背景 Spring boot集成mybatis后,我们可以使用mybatis来操作数据。然后,我们还是需要写许多重复的代码和sql语句,比如增删改查。这时候,我们就可以使用 mybatis-plus了,它可以极大解放我…...

数据仓库之缓慢变化维

缓慢变化维(Slowly Changing Dimensions, SCD)是数据仓库设计中的一个重要概念,用于处理维度表中随时间缓慢变化的属性。维度表中的数据通常描述业务实体(如客户、产品、员工等),而这些实体的某些属性&…...

跑mask2former(自用)

1. 运行docker 基本命令: sudo docker ps -a (列出所有容器状态) sudo docker run -dit -v /hdd/lyh/mask2former:/mask --gpus "device0,1" --shm-size 16G --name mask 11.1:v6 (创建docker容器&…...

Linux日志服务rsyslog深度解析(上)

🐇明明跟你说过:个人主页 🏅个人专栏:《Linux :从菜鸟到飞鸟的逆袭》🏅 🔖行路有良友,便是天堂🔖 目录 一、引言 1、日志在Linux系统中的作用 2、rsyslog历史背景 …...

python的df.describe()函数

一、初识describe()函数 在数据分析和处理的过程中,我们经常需要了解数据的基本统计信息,如均值、标准差、最小值、最大值等。pandas库中的describe()函数为我们提供了这样的功能,它可以快速生成数据集的描述性统计信息。 二、describe()函数的基本用法 describe()函数是pan…...

Feign的介绍与说明

Feign是Spring Cloud提供的一个声明式、模板化的HTTP客户端,旨在使编写Java HTTP客户端变得更容易。它的设计目标是让Web服务调用变得更加简单,无论是在本地还是在远程。使用Feign,开发者可以像调用本地服务一样调用远程服务,提供…...

【Linux】用户和组的管理、综合实训

目录 实训1:用户的管理 实训2:组的管理 实训3:综合实训 实训1:用户的管理 (1)创建一个新用户userl,设置其主目录为/home/user 1。 (2)查看/etc/passwd 文件的最后一行,看看是如何记录的。 (3)查看文件/etc/shadow文件的最后一…...

B=2W,奈奎斯特极限定理详解

一直没搞明白奈奎斯特极限定理的含义,网上搜了很久也没得到答案。最近深思几天后,终于有了点心得。顺便吐槽一下,csdn的提问栏目,有很多人用chatgpt秒回这个事,实在是解决不了问题,有时候人的问题大多数都是…...

【Pytorch 】Dataset 和Dataloader制作数据集

文章目录 Dataset 和 Dataloader定义Dataset定义Dataloader综合案例1 导入两个列表到Dataset综合案例2 导入 excel 到Dataset综合案例3 导入图片到Dataset导入官方数据集Dataset 和 Dataloader Dataset指定了数据集包含了什么,可以是自定义数据集,也可以是以及官方数据集Data…...

[Algorithm][动态规划][两个数组的DP][正则表达式匹配][交错字符串][两个字符串的最小ASCII删除和][最长重复子数组]详细讲解

目录 1.正则表达式匹配1.题目链接2.算法原理详解3.代码实现 2.交错字符串1.题目链接2.算法原理详解3.代码实现 3.两个字符串的最小ASCII删除和1.题目链接2.算法原理详解3.代码实现 4.最长重复子数组1.题目链接2.算法原理详解3.代码实现 1.正则表达式匹配 1.题目链接 正则表达…...

Ffmpeg安装和简单使用

Ffmpeg安装 下载并解压 进入官网 (https://ffmpeg.org/download.html),选择 Window 然后再打开的页面中下滑找到 release builds,点击 zip 文件下载 环境变量配置 下载好之后解压,找到 bin 文件夹,里面有3个 .exe 文件 然后复制…...

29、matlab算数运算汇总2:加、减、乘、除、幂、四舍五入

1、乘法:times, .* 语法 C A.*B 通过将对应的元素相乘来将数组 A 和 B 相乘。 C times(A,B) 是执行 A.*B 的替代方法, 1)将两个向量相乘 代码及运算 A [1 0 3]; B [2 3 7]; C A.*BC 2 0 212) 将两个数组相乘 代码及运算 A [1 0 3;…...

<Rust><iced>基于rust使用iced库构建GUI实例:动态改变主题色

前言 本专栏是Rust实例应用。 环境配置 平台:windows 软件:vscode 语言:rust 库:iced、iced_aw 概述 本篇构建了这样的一个实例,可以动态修改UI的主题,通过菜单栏来选择预设的自定义主题和官方主题&#…...

k8s——安全机制

一、安全机制说明 Kubernetes作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务。API Server是集群内部各个组件通信的中介, 也是外部控制的入口。所以Kubernetes的安全机制基本就是围绕保护API Server来设计的。 比如 kubectl 如果想…...

Linux驱动应用编程(三)UART串口

本文目录 前述一、手册查看二、命令行调试串口1. 查看设备节点2. 使用stty命令设置串口3. 查看串口配置信息4. 调试串口 三、代码编写1. 常用API2. 例程线程优化 前述 在开始实验前,请一定要检查测试好所需硬件是否使用正常,不然调试过程中出现的问题&am…...

【设计模式深度剖析】【4】【行为型】【策略模式】

文章目录 策略模式定义英文原话直译 角色类图策略接口Strategy:具体策略类上下文类Context测试类 策略模式的应用策略模式的优点策略模式的缺点策略模式的使用场景 策略模式 策略模式(Strategy Pattern) Strategy策略也称作Policy政策。 想…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...