当前位置: 首页 > news >正文

SVM模型实现城镇居民月平均消费数据分类

SVM模型实现城镇居民月平均消费数据分类

  • 一、SVM支持向量机简介
  • 二、数据集介绍
  • 三、SVM建模流程及分析

一、SVM支持向量机简介

支持向量机是由感知机发展而来的机器学习算法,属于监督学习算法。支持向量机具有完备的理论基础,算法通过对样本进行求解,得到最大边距的超平面,并将其作为分类决策边界。
支持向量机(Support Vector Machines, SVM)在解决小样本、线性、非线性及高维模式识别领域表现出特有的优势。
SVM是一种研究小样本机器学习模型的统计学习方法,其目标是在有限的数据信息情况下,渐进求解得到最优结果。其核心思想是假设一个函数集合,其中每个函数都能取得小的误差,然后从中选择误差小的函数作为最优函数。
SVM的原理是寻找一个保证分类要求的最优分类超平面,策略是使超平面两侧的间隔最大化。模型建立过程可转换为一个凸二次规划问题的求解。SVM很容易处理线性可分的问题。对于非线性问题,SVM的处理方法是选择一个核函数,然后通过核函数将数据映射到高维特征空间,最终在高维空间中构造出最优分类超平面,从而把原始平面上不好分的非线性数据分开。

二、数据集介绍

先来整体看一下数据情况:
在这里插入图片描述
某年全国各省、区、市城镇居民月平均消费情况数据。 确定分类为:1-20号省份为第一类,记为G1 ,21-27号省份为第二类,记为G2。其中表中的指标为:x1人均粮食支出(元/人);x2人均副食支出(元/人);x3 人均烟酒茶支出(元/人)

相关文章:

SVM模型实现城镇居民月平均消费数据分类

SVM模型实现城镇居民月平均消费数据分类 一、SVM支持向量机简介二、数据集介绍三、SVM建模流程及分析一、SVM支持向量机简介 支持向量机是由感知机发展而来的机器学习算法,属于监督学习算法。支持向量机具有完备的理论基础,算法通过对样本进行求解,得到最大边距的超平面,并…...

[ZJCTF 2019]NiZhuanSiWei、[HUBUCTF 2022 新生赛]checkin、[SWPUCTF 2021 新生赛]pop

目录 [ZJCTF 2019]NiZhuanSiWei [HUBUCTF 2022 新生赛]checkin 1.PHP 关联数组 PHP 数组 | 菜鸟教程 2.PHP 弱比较绕过 PHP 类型比较 | 菜鸟教程 [SWPUCTF 2021 新生赛]pop [ZJCTF 2019]NiZhuanSiWei BUUCTF [ZJCTF 2019]NiZhuanSiWei特详解(php伪…...

c++“二纯” 纯虚函数和纯虚析构

首先给出这样一段概念: 在C中,当基类包含纯虚函数时,这些纯虚函数在基类中不需要(也不能)有定义。但是,如果基类有一个纯虚析构函数(即析构函数被声明为纯虚函数),那么情…...

MATLAB基础应用精讲-【数模应用】二元Logit分析(最终篇)(附python、MATLAB和R语言代码实现)

目录 算法原理 SPSSAU 1、二元logistic分析思路说明 2、如何使用SPSSAU进行二元logistic操作 3、二元logistic相关问题 算法流程 一、分析前准备 1、确定分析项 2.多重共线性判断 3.数据预处理 二、回归基本情况分析 三、模型拟合评价 1、似然比检验 2、拟合优…...

centos7安装mysql(完整)

官网5.7版本:https://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.29-1.el7.x86_64.rpm-bundle.tar 文件存于百度网盘:链接:https://pan.baidu.com/s/1x0fucIsD36_7agu88Jd2yg 提取码:s4m8 复制这段内容后打开百度网盘手机A…...

C++ STL std::vector的实现机制【面试】

std::vector 是 C 标准模板库(STL)中的一种序列容器,它封装了动态数组的实现,提供了一系列方法来操作这个动态数组。以下是 std::vector 的一些关键实现机制: 连续内存存储: std::vector 通过一块连续的内存…...

激活函数对比

激活函数 sigmoid / tanh / relu / leaky relu / elu / gelu / swish 1、sigmoid 优缺点 1) 均值!0,导致fwxb求导时,方向要么全正要么全负 可以通过batch批量训练来缓解 2) 输入值大于一定范围梯度就会消失 3) 运算复杂 2、tanh 优缺点 1) 均值0 2)…...

pycharm 上一次编辑位置不见了

目录 pycharm2024版 上一次编辑位置不见了,研究发现移到了左下角了,如下图所示: 上一次编辑位置快捷键: 设置为旧版ui,新版不好用 pycharm2024版 上一次编辑位置不见了,研究发现移到了左下角了&#xff…...

FFmpeg播放器的相关概念【1】

播放器框架 相关术语 •容器/文件(Conainer/File):即特定格式的多媒体文件,比如mp4、flv、mkv等。 • 媒体流(Stream):表示时间轴上的一段连续数据,如一段声音数据、一段…...

=与==的优先级

项目场景: 在写消息队列的过程中,问题代码如下: #include "message.h"void send(message *msg, int msg_id); void main() {printf("The sender process id %d\n", getpid());key_t key;int msg_id;message msg {.ty…...

在Linux上的Java项目导出PDF乱码问题

在Linux上的Java项目导出PDF乱码问题 场景:一个Java项目导出PDF,在我本地导出是没有问题,但是部署上Linux上后,导出就出现了乱码了。 处理方案 我这里使用的处理方案是在Linux服务器上安装一些PDF需要使用的字体 1.把字体上传到…...

java:使用shardingSphere访问mysql的分库分表数据

# 创建分库与分表 创建两个数据库【order_db_1、order_db_2】。 然后在两个数据库下分别创建三个表【orders_1、orders_2、orders_3】。 建表sql请参考: CREATE TABLE orders_1 (id bigint NOT NULL,order_type varchar(255) NULL DEFAULT NULL,customer_id bigi…...

红酒:如何选择适合的红酒储存容器

选择适合的红酒储存容器对于保持雷盛红酒的品质和风味至关重要。不同的容器具有不同的优缺点,因此应根据个人需求和条件进行选择。以下是一些常见的红酒储存容器的特点和适用场景: 玻璃瓶:玻璃瓶是常见的红酒储存容器。它具有良好的密封性能、…...

【C++】 使用CRT 库检测内存泄漏

CRT 库检测内存泄漏 一、CRT 库简介二、CRT 库的使用1、启用内存泄漏检测2、设置应用退出时显示内存泄漏报告3、丰富内存泄漏报告4、演示使用 内存泄漏是 C/C 应用程序中最微妙、最难以发现的 bug,存泄漏是由于之前分配的内存未能正确解除分配而导致的。 最开始的少…...

python手动搭建transformer,并实现自回归推理

以下是添加了详细注释的代码和参数介绍: Transformer 实现及自回归推理 本文展示了如何手动实现一个简化版的Transformer模型,并用自回归方式实现一个seq2seq任务,例如机器翻译。 导入必要的库 import torch import torch.nn as nn import…...

AI数据分析:用deepseek进行贡献度分析(帕累托法则)

帕累托法则,也称为80/20法则,是由意大利经济学家维尔弗雷多帕累托提出的。它指出在许多情况下,大约80%的效益来自于20%的原因。这个原则在很多领域都有应用,包括商业、经济、社会问题等。 在数据分析中,帕累托法则可以…...

生成式人工智能的风险与治理——以ChatGPT为例

文 | 西南政法大学经济法学院 马羽男 以ChatGPT为代表的生成式人工智能在创造社会福利的同时,也带来了诸多风险。因此,当务之急是结合我国生成式人工智能发展状况,厘清其应用价值与潜在风险之间的关系,以便在不影响应用发展的前提…...

十足正式在山东开疆拓土!首批店7月初开业,地区便利店现全新面貌!

十足便利店将正式进军山东市场,以济南、淄博两座城市为核心发展起点,目前济南市已经有三家十足门店正在装修施工中,首批15家门店将于7月初开业,这标志着十足集团市场战略布局迈出了至关重要的一步。 随着3月份罗森品牌在济南成功开…...

Unity2D游戏开发-玩家控制

在Unity2D游戏开发中,玩家控制是游戏互动性的核心。本文将解析一个典型的Unity2D玩家控制脚本,探讨如何实现流畅的玩家移动、跳跃和动画切换。以下是一个Unity脚本示例,实现了这些基础功能。 1. 脚本结构 using System.Collections; using …...

如何在 Windows 11 上免费恢复永久删除的文件

虽然Windows 上的已删除文件恢复不简单,但您可能希望免费或无需任何软件即可恢复已删除的文件。下面,我们列出了一个指南,其中包含有关如何在 Windows 11 上免费检索永久删除的文件的说明。 #1 奇客数据恢复 奇客数据恢复是一个广受好评的免…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...