数据可视化:Matplotlib 与 Seaborn
数据可视化是数据分析中至关重要的一部分,它能帮助我们直观地理解数据的分布、趋势和关系。Python 中,Matplotlib 和 Seaborn 是两个最常用的可视化库。本文将详细介绍如何使用 Matplotlib 和 Seaborn 进行数据可视化,包括基本图形、图形定制、高级图形和实战案例等内容。
一、Matplotlib 基础
Matplotlib 是一个灵活而强大的绘图库,能够创建各种静态、动态和交互式图形。
1. 基本用法
import matplotlib.pyplot as plt # 简单的折线图 x = [1, 2, 3, 4, 5] y = [1, 4, 9, 16, 25] plt.plot(x, y) plt.xlabel('X axis') plt.ylabel('Y axis') plt.title('Simple Line Plot') plt.show()
2. 图形定制
线条样式和颜色
plt.plot(x, y, linestyle='--', color='r', marker='o') plt.show()
子图
subplots(2, 2) axs[0, 0].plot(x, y, 'r') axs[0, 1].plot(x, y, 'g') axs[1, 0].plot(x, y, 'b') axs[1, 1].plot(x, y, 'y') plt.show()
3. 常见图表
柱状图
categories = ['A', 'B', 'C', 'D'] values = [3, 7, 5, 4] plt.bar(categories, values) plt.show()
散点图
x = [5, 7, 8, 7, 2, 17, 2, 9, 4, 11, 12, 9, 6] y = [99, 86, 87, 88, 100, 86, 103, 87, 94, 78, 77, 85, 86] plt.scatter(x, y) plt.show()
直方图
data = [1.5, 2.5, 2.5, 3.5, 2.8, 4.2, 4.0, 5.5, 5.2, 4.8, 3.0, 4.0, 3.5, 2.5] plt.hist(data, bins=5) plt.show()
饼图
sizes = [15, 30, 45, 10] labels = ['A', 'B', 'C', 'D'] colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] explode = (0.1, 0, 0, 0) plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140) plt.axis('equal') plt.show()
二、Seaborn 基础
Seaborn 是基于 Matplotlib 之上的高级可视化库,专为统计图形而设计,能够生成更美观且信息丰富的图形。
1. 基本用法
import seaborn as sns # 设置主题 sns.set_theme() # 载入示例数据集 tips = sns.load_dataset("tips") # 创建一个简单的散点图 sns.scatterplot(x="total_bill", y="tip", data=tips) plt.show()
2. 常见图表
条形图
sns.barplot(x="day", y="total_bill", data=tips) plt.show()
箱线图
sns.boxplot(x="day", y="total_bill", data=tips) plt.show()
小提琴图
sns.violinplot(x="day", y="total_bill", data=tips) plt.show()
热力图
flights = sns.load_dataset("flights") flights_pivot = flights.pivot("month", "year", "passengers") sns.heatmap(flights_pivot, annot=True, fmt="d", cmap="YlGnBu") plt.show()
联合分布图
sns.jointplot(x="total_bill", y="tip", data=tips, kind="reg") plt.show()
三、Matplotlib 高级用法
1. 复杂图表
叠加图
x = range(1, 6) y1 = [1, 4, 6, 8, 10] y2 = [2, 2, 7, 10, 12] plt.plot(x, y1, label='Line 1') plt.plot(x, y2, label='Line 2') plt.legend() plt.show()
多子图
fig, axs = plt.subplots(2, 1) axs[0].plot(x, y1, 'tab:blue') axs[1].plot(x, y2, 'tab:orange') plt.show()
2. 动态图表
import matplotlib.animation as animation fig, ax = plt.subplots() x = [0] y = [0] line, = ax.plot(x, y) def update(frame): x.append(frame) y.append(frame ** 2) line.set_data(x, y) ax.relim() ax.autoscale_view() return line, ani = animation.FuncAnimation(fig, update, frames=range(10), blit=True) plt.show()
四、Seaborn 高级用法
1. FacetGrid
g = sns.FacetGrid(tips, col="time", row="sex") g.map(sns.scatterplot, "total_bill", "tip") plt.show()
2. PairGrid
g = sns.PairGrid(tips, hue="sex") g.map_diag(sns.histplot) g.map_offdiag(sns.scatterplot) g.add_legend() plt.show()
3. 自定义调色板
sns.set_palette("pastel") sns.boxplot(x="day", y="total_bill", data=tips) plt.show()
4. 风格设置
sns.set_style("whitegrid") sns.boxplot(x="day", y="total_bill", data=tips) plt.show()
五、实战案例:泰坦尼克号数据分析
在这个实战案例中,我们将使用 Matplotlib 和 Seaborn 来分析经典的泰坦尼克号乘客数据集。
1. 数据准备
import pandas as pd # 读取数据 titanic = sns.load_dataset("titanic") # 查看数据基本信息 print(titanic.info())
2. 数据预处理
# 填充缺失值 titanic['age'].fillna(titanic['age'].median(), inplace=True) titanic['embarked'].fillna(titanic['embarked'].mode()[0], inplace=True) titanic.drop(columns=['deck', 'embark_town', 'alive'], inplace=True)
3. 数据可视化
乘客年龄分布
plt.figure(figsize=(10, 6)) sns.histplot(titanic['age'], bins=30, kde=True) plt.title('Age Distribution of Passengers') plt.show()
各类舱乘客生还率
plt.figure(figsize=(10, 6)) sns.barplot(x='class', y='survived', data=titanic) plt.title('Survival Rate by Class') plt.show()
性别与生还率关系
plt.figure(figsize=(10, 6)) sns.barplot(x='sex', y='survived', data=titanic) plt.title('Survival Rate by Gender') plt.show()
年龄与生还率关系
plt.figure(figsize=(10, 6)) sns.violinplot(x='survived', y='age', data=titanic, split=True) plt.title('Age Distribution by Survival') plt.show()
结论
通过本文,我们深入了解了 Matplotlib 和 Seaborn 两个强大的 Python 可视化库的基础和高级用法。从基本图形的绘制到复杂图表和动态图表的创建,再到实际数据分析案例的应用,我们可以看到,Matplotlib 提供了灵活而强大的功能,Seaborn 则在统计图形方面更为便捷和美观。掌握这两个工具,将极大地提升我们在数据分析中的可视化能力。
参考文献
- Matplotlib 官方文档
- Seaborn 官方文档
- Pandas 官方文档
- 泰坦尼克号数据集
相关文章:
数据可视化:Matplotlib 与 Seaborn
数据可视化是数据分析中至关重要的一部分,它能帮助我们直观地理解数据的分布、趋势和关系。Python 中,Matplotlib 和 Seaborn 是两个最常用的可视化库。本文将详细介绍如何使用 Matplotlib 和 Seaborn 进行数据可视化,包括基本图形、图形定制…...

【linux】自定义快捷命令/脚本
linux自定义快捷命令 场景自定义命令自定义脚本 场景 深度学习经常要切换到自己环境,conda activate mmagic,但是又不想每次重复打这么多字,想使用快捷命令直接切换。 自定义命令 使用别名(alias)或自定义脚本来创建…...

使用onnxruntime加载YOLOv8生成的onnx文件进行目标检测
在网上下载了60多幅包含西瓜和冬瓜的图像组成melon数据集,使用 LabelMe 工具进行标注,然后使用 labelme2yolov8 脚本将json文件转换成YOLOv8支持的.txt文件,并自动生成YOLOv8支持的目录结构,包括melon.yaml文件,其内容…...

QT 信号和槽 一对多关联示例,一个信号,多个槽函数响应,一个信号源如何绑定多个槽函数
在窗体里放置一个单行文本编辑控件(QLineEdit)、一个标签控件(QLabel)和一个文本浏览控件(QTextBrowser),在单行文 本编辑控件里的文本被编辑时,标签控件和文本浏览控件都会同步显示…...

C++ AVL树 详细讲解
目录 一、AVL树的概念 二、AVL树的实现 1.AVL树节点的定义 2.AVL树的插入 3.AVL树的旋转 4.AVL树的验证 三、AVL树的性能 四、完结撒❀ 一、AVL树的概念 二叉搜索树虽可以缩短查找的效率,但 如果数据有序或接近有序二叉搜索树将退化为单支树,查 …...

Faster R-CNN:端到端的目标检测网络
本文回顾了由微软研究人员开发的 Faster R-CNN 模型。Faster R-CNN 是一种用于物体检测的深度卷积网络,在用户看来,它是一个单一的、端到端的统一网络。该网络可以准确快速地预测不同物体的位置。为了真正理解 Faster R-CNN,我们还必须快速概…...

如何给 MySQL 表和列授予权限?(官方版)
目录 授予表级别权限 授予列级别权限 如何给MySQL表和列授予权限是MySQL数据操作中非常重要的步骤,也是企业级使用MySQL数据库的起步点,以下分别参照官方教程整理的MySQL数据库的权限操作。 以下的语句可以直接使用MySQL的命令行进行操作(如何…...

攻防世界testre做法(考点:base58)
在做这道题目之前,我们先来简单了解一下base64加密和base58加密,先来说一些预备知识,bit为1个位,即一个0或1,八个位组成一个字节,即八个二进制数。 base64编码原理:1,在使用base64加…...

计算机视觉与模式识别实验1-1 图像的直方图平衡
文章目录 🧡🧡实验流程🧡🧡1.读入图像‘rice.png’,在一个窗口中显示灰度级n64,128和256的图像直方图。2.调解图像灰度范围,观察变换后的图像及其直方图的变化。3.分别对图像‘pout.tif’和‘ti…...

【C++课程学习】:C++入门(函数重载)
🎁个人主页:我们的五年 🔍系列专栏:C课程学习 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 🌈函数重载: 🍉1.参数个数不同: 🍉2.参数…...

skywalking介绍及搭建
链路追踪框架比对: skywalking安装部署: 下载地址:Downloads | Apache SkyWalking 配置微服务与skywalking整合: copy agent/optional-plugins/apm-spring-cloud-getway-xx.jar到plugins,然后重启skywalking 监控界面…...

分析示例 | Simufact焊接工艺仿真变形精确预测汽车结构
导语 焊接是汽车制造过程中一个关键环节,白车身、发动机、底盘和变速箱等都离不开焊接工艺的应用,主要涉及气保焊、电阻点焊、激光焊、电子束焊等多种焊接工艺。由于汽车车型众多、成形结构复杂、汽车制造质量、效率、成本等方面的综合要求。如何高效、…...
模式识别选择题
影响K-均值聚类算法效果的主要因素之一是什么? A. 初始聚类中心的选取 B. 样本输入顺序 C. 模式相似性测度 D. 分类准则 答案:A支持向量机(SVM)在处理非线性问题时,通常使用什么方法? A. 引入核函数 B. 增加…...
【Java基础】线程方法
start():启动线程,使线程进入就绪状态。 run():线程执行的代码逻辑,需要重写该方法。 停止线程 void interrupt() 中断线程,让它重新去争抢cpu 如果目标线程长时间等待,则应该使用interrupt方法来中断等待…...
C++之动态数组
C给我们提供了一个叫Vector的类,这个Vector在std命名空间中。这个Vector有点像一个集合,一个不强制其实际元素具有唯一性的集合,和数组一样,但是和C普通的数组又不太一样,和标准的数组不同当你创建Vector时,…...

使用 image-combiner 开源项目实现对海报图片的生成
1:gitee 项目地址 image-combiner: ImageCombiner是一个专门用于Java服务端图片合成的工具,没有很复杂的功能,简单实用,从实际业务场景出发,提供简单的接口,几行代码即可实现图片拼合(当然用于…...
【缓存】框架层常见问题和对策
缓存是为了加快读写速度,再了解redis这类框架层的缓存应用之前,我们不妨先思考下操作系统层面的缓存解决方案,这样有助于我们更深的理解缓存,哪些是系统层面的,哪些是服务层面。 以下是一些常见的缓存问题及其解决方案…...

【FAS】《CN103106397B》
原文 CN103106397B-基于亮瞳效应的人脸活体检测方法-授权-2013.01.19 华南理工大学 方法 / 点评 核心方法用的是传统的形态学和模板匹配,亮点是双红外发射器做差分 差分:所述FPGA芯片控制两组红外光源(一近一远)交替亮灭&…...

3D按F3为什么显示不出模型?---模大狮模型网
对于3D建模软件的用户来说,按下F3键通常是用来显示或隐藏模型的功能之一。然而,有时当按下F3键时,却无法正确显示模型,这可能会让用户感到困惑。模大狮将探讨这种情况发生的可能原因以及解决方法,帮助设计师们更好地理…...

C++设计模式——Adapter适配器模式
一,适配器模式简介 适配器模式是一种结构型设计模式,用于将已有接口转换为调用者所期望的另一种接口。 适配器模式让特定的API接口可以适配多种场景。例如,现有一个名为"Reader()"的API接口只能解析txt格式的文件,给这…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...