模式识别选择题
- 影响K-均值聚类算法效果的主要因素之一是什么?
A. 初始聚类中心的选取
B. 样本输入顺序
C. 模式相似性测度
D. 分类准则
答案:A - 支持向量机(SVM)在处理非线性问题时,通常使用什么方法?
A. 引入核函数
B. 增加特征数量
C. 使用多层感知器
D. 改变决策函数
答案:A - 感知器算法适用于哪种情况?
A. 线性可分的情况
B. 线性不可分的情况
C. 非线性可分的情况
D. 所有情况
答案:A - 特征选择的主要目的是什么?
A. 增加特征数量
B. 降低特征维数
C. 提高模型复杂度
D. 引入非线性特征
答案:B - 在统计模式分类问题中,当先验概率未知时,可以使用哪种准则?
A. 最小损失准则
B. 最小最大损失准则
C. 最小误判概率准则
D. 贝叶斯准则
答案:B - 在K-means聚类算法中,K代表什么?
A. 初始聚类中心的个数
B. 迭代次数
C. 数据集的大小
D. 聚类结果的准确率
答案:A - 下列关于支持向量机(SVM)的说法,正确的是:
A. SVM只适用于线性可分问题
B. SVM在处理非线性问题时,通常使用核函数
C. SVM是一种无监督学习方法
D. SVM的决策函数是一个线性函数
答案:B - 下列关于模式识别的描述中,正确的是哪项?
A. 模式识别是一种仅处理数值型数据的技术
B. 特征提取是模式识别中可有可无的步骤
C. 聚类分析算法属于无监督学习方法
D. K-均值聚类算法对初始聚类中心的选择不敏感
答案:C - 在模式识别中,特征提取的主要目的是什么?
A. 增加数据维度
B. 减少数据维度
C. 提取与分类无关的信息
D. 提高计算速度
答案: B - 下列关于K-均值聚类算法的说法中,正确的是哪项?
A. K表示聚类迭代的次数
B. K的选择对聚类结果无影响
C. K的选择需要预先确定,并且对聚类结果有重要影响
D. K-均值聚类算法只适用于数值型数据
答案:C - 以下哪种算法属于非监督学习?
A. K-均值聚类
B. 逻辑回归
C. 感知器算法
D. 支持向量机
答案: A - 以下哪种算法适用于处理非线性可分问题?
A. 感知器算法
B. K-均值聚类
C. 支持向量机(使用核函数)
D. Fisher线性判别器
答案: C - 以下哪项指标通常用于评估聚类算法的性能?
A. 准确率
B. 查全率
C. 轮廓系数
D. F1分数
答案: C - 在特征提取过程中,以下哪个步骤通常被用来降低数据维度?
A. 标准化
B. 归一化
C. 主成分分析 (PCA)
D. 离散化 - 在模式识别中,以下哪种技术常用于无监督学习?
A. 逻辑回归
B. K-近邻 (KNN)
C. K-均值聚类
D. 朴素贝叶斯分类器 - 在模式识别中,交叉验证的主要目的是什么?
A. 防止过拟合
B. 提高模型复杂度
C. 减少计算时间
D. 评估模型在训练数据上的性能 - 关于聚类分析,以下哪个描述是正确的?
A. 聚类分析属于有监督学习
B. 聚类分析不需要预先定义类别
C. K-均值聚类是一种动态聚类算法
D. ISODATA算法是一种静态聚类算法
答案:B - 在描述模式的特征量中,如果特征向量的元素都是二值的(0或1),则一般使用什么进行相似度量?
A. 欧氏距离
B. 曼哈顿距离
C. 夹角余弦
D. 匹配测度(如汉明距离)
答案:D - 在模式识别中,关于特征选择的描述哪个是正确的?
A. 特征选择越多越好,以保证信息的完整性
B. 特征选择越少越好,以减少计算量
C. 特征要能反映样本的本质,并且数量要适中
D. 特征选择对分类器性能没有影响
答案:C - 以下关于监督学习和非监督学习的描述,哪项是正确的?
A. 监督学习不需要已知类别的样本数据
B. 非监督学习不需要离线训练过程
C. 监督学习通常用于聚类分析
D. 非监督学习适用于有标签的数据集
答案:B - 对于K-均值聚类算法,以下哪个因素对其性能影响最大?
A. 初始聚类中心的选择
B. 迭代次数
C. 特征的数量
D. 数据集的规模
答案:A - 模式识别中,特征选择的主要目的是什么?
A. 减少数据维度
B. 提高计算速度
C. 保证分类器的性能
D. 以上都是
答案:D - 在模式识别中,下列关于特征选择的说法,正确的是哪项?
A. 特征选择是选择尽可能多的特征以提高模型性能
B. 特征选择仅考虑特征的区分度,不考虑计算成本
C. 特征选择的目标是选取最能代表数据内在结构的特征子集
D. 特征选择对分类器性能没有影响
答案:C - 在模式识别中,以下哪种距离度量方法考虑了数据的分布情况,适用于多维度且各维度尺度不一致的情况?
A. 欧氏距离
B. 马氏距离
C. 曼哈顿距离
D. 切比雪夫距离 - 在统计模式识别中,描述模式最常用的方法是什么?
A. 特征向量
B. 语法结构
C. 网络图
D. 决策树 - 在进行聚类分析时,若数据集中的模式分布呈现明显的团状结构,应优先考虑使用哪种类型的聚类算法?
A. 分层聚类
B. K均值聚类
C. DBSCAN密度聚类
D. 层次聚类 - 贝叶斯决策理论中,最小错误率的决策依据是什么?
A. 先验概率
B. 后验概率
C. 类条件概率
D. 最大似然估计
相关文章:
模式识别选择题
影响K-均值聚类算法效果的主要因素之一是什么? A. 初始聚类中心的选取 B. 样本输入顺序 C. 模式相似性测度 D. 分类准则 答案:A支持向量机(SVM)在处理非线性问题时,通常使用什么方法? A. 引入核函数 B. 增加…...
【Java基础】线程方法
start():启动线程,使线程进入就绪状态。 run():线程执行的代码逻辑,需要重写该方法。 停止线程 void interrupt() 中断线程,让它重新去争抢cpu 如果目标线程长时间等待,则应该使用interrupt方法来中断等待…...
C++之动态数组
C给我们提供了一个叫Vector的类,这个Vector在std命名空间中。这个Vector有点像一个集合,一个不强制其实际元素具有唯一性的集合,和数组一样,但是和C普通的数组又不太一样,和标准的数组不同当你创建Vector时,…...
使用 image-combiner 开源项目实现对海报图片的生成
1:gitee 项目地址 image-combiner: ImageCombiner是一个专门用于Java服务端图片合成的工具,没有很复杂的功能,简单实用,从实际业务场景出发,提供简单的接口,几行代码即可实现图片拼合(当然用于…...
【缓存】框架层常见问题和对策
缓存是为了加快读写速度,再了解redis这类框架层的缓存应用之前,我们不妨先思考下操作系统层面的缓存解决方案,这样有助于我们更深的理解缓存,哪些是系统层面的,哪些是服务层面。 以下是一些常见的缓存问题及其解决方案…...
【FAS】《CN103106397B》
原文 CN103106397B-基于亮瞳效应的人脸活体检测方法-授权-2013.01.19 华南理工大学 方法 / 点评 核心方法用的是传统的形态学和模板匹配,亮点是双红外发射器做差分 差分:所述FPGA芯片控制两组红外光源(一近一远)交替亮灭&…...
3D按F3为什么显示不出模型?---模大狮模型网
对于3D建模软件的用户来说,按下F3键通常是用来显示或隐藏模型的功能之一。然而,有时当按下F3键时,却无法正确显示模型,这可能会让用户感到困惑。模大狮将探讨这种情况发生的可能原因以及解决方法,帮助设计师们更好地理…...
C++设计模式——Adapter适配器模式
一,适配器模式简介 适配器模式是一种结构型设计模式,用于将已有接口转换为调用者所期望的另一种接口。 适配器模式让特定的API接口可以适配多种场景。例如,现有一个名为"Reader()"的API接口只能解析txt格式的文件,给这…...
Python文本处理利器:jieba库全解析
文章目录 Python文本处理利器:jieba库全解析第一部分:背景和功能介绍第二部分:库的概述第三部分:安装方法第四部分:常用库函数介绍1. 精确模式分词2. 全模式分词3. 搜索引擎模式分词4. 添加自定义词典5. 关键词提取 第…...
【C/C++】C语言如何实现类似C++的智能指针?
在C中,智能指针是为了自动化资源管理而引入的工具。比如std::unique_ptr和std::shared_ptr等,它们管理着所持有对象的生命周期,可以在智能指针被销毁时自动释放其所持有的资源。在C语言中,虽然没有直接的智能指针概念,…...
九大微服务监控工具详解
Prometheus Prometheus 是一个开源的系统监控、和报警工具包,Prometheus 被设计用来监控“微服务架构”。 主要解决: 监控和告警:Prometheus 可以对系统、和应用程序进行实时监控,并在出现问题时发送告警;数据收集和…...
java aliyun oss上传和下载工具类
java aliyun oss上传和下载工具类 依赖 <dependency><groupId>com.aliyun.oss</groupId><artifactId>aliyun-sdk-oss</artifactId><version>3.8.0</version></dependency>工具类 import com.alibaba.fastjson.JSON; import c…...
P7 品牌管理
逆向生成页面 新增菜单—商品系统的品牌管理 —product/brand 在代码生成器得到的文件中, main-resources-src-views-modules-product brand.vue、brand-add-or-update.vue放到category.vue同级vue文件有新增、删除按钮,但页面未显示,是因…...
C语言详解(动态内存管理)1
Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…...
106.网络游戏逆向分析与漏洞攻防-装备系统数据分析-在UI中显示装备与技能信息
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 如果看不懂、不知道现在做的什么,那就跟着做完看效果,代码看不懂是正常的,只要会抄就行,抄着抄着就能懂了 内容…...
AWS EMR Serverless
AWS概述 EMR Serverless 简介 在AWS概述一文中简单介绍过AWS EMR, 它是AWS提供的云端大数据平台。借助EMR可以设置集群以便在几分钟内使用大数据框架处理和分析数据。创建集群可参考官方文档:Amazon EMR 入门。但集群创建之后需要一直运行,用户需要管理…...
Java面试题:Redis持久化问题
Redis持久化问题 RDB (Redis Database Backup File) Redis数据快照 将内存中的所有数据都记录到磁盘中做快照 当Redis实例故障重启时,从磁盘读取快照文件恢复数据 使用 save/bgsave命令进行手动快照 save使用主进程执行RDB,对所有命令都进行阻塞 bgsave使用子进程执行R…...
【Java】解决Java报错:ClassCastException
文章目录 引言1. 错误详解2. 常见的出错场景2.1 错误的类型转换2.2 泛型集合中的类型转换2.3 自定义类和接口转换 3. 解决方案3.1 使用 instanceof 检查类型3.2 使用泛型3.3 避免不必要的类型转换 4. 预防措施4.1 使用泛型和注解4.2 编写防御性代码4.3 使用注解和检查工具 5. 示…...
OpenCV-最小外接圆cv::minEnclosingCircle
作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 函数原型 void minEnclosingCircle(InputArray points, Point2f& center, float& radius); 参数说明 InputArray类型的…...
大小堆运用巧解数据流的中位数
一、思路 我们将所有数据平分成两份,前面那一部分用小堆来存,后面的部分用大堆来存,这样我们就能立刻拿到中间位置的值。 如果是奇数个数字,那么我们就将把中间值放在前面的大堆里,所以会有两种…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
