当前位置: 首页 > news >正文

R语言探索与分析14-美国房价及其影响因素分析

一、选题背景

以多元线性回归统计模型为基础,用R语言对美国部分地区房价数据进行建模预测,进而探究提高多元回 归线性模型精度的方法。先对数据进行探索性预处理,随后设置虚拟变量并建模得出预测结果,再使用方差膨胀因子对 多重共线性进行修正,从而提高模型精度与稳健性,使回归结果在很大程度上得到优化。...

近年来,随着经济的不断增长,飞速增长的房价仍然是民众心中最看重的问题之一。房地产行业是我国经济健康发展的稳定器,也是加快我国经济增长的助力器,不仅对经济社会起着重要的支撑作用,还对社会的稳定产生着难以衡量的影响。

二、文献综述

...

三、方案论证(设计理念)

多元线性回归具有非常广泛的应用范围,但在实 际预测中对存在类别变量设置不充分或多重共线性 问题,导致统计模型缺乏精度和稳健性。由此,本文对如何精准且高效的排除多重共线性影响,并合理地 将分类变量转化为虚拟变量,提升多元线性回归模型 精度作了进一步探索,并将其应用于房价预测上。

四、实证分析

在美国房屋信息数据集中,包含不同地区的平均房价及多个可能影响房价的自变量:AvgAreaIncome(该地区的平均收入) AvgAreaHouseAge (房子的平均面积)AreaPopulation(该地区的人口数量)等。首先进行数据展示

随后读取数据并且进行描述性统计

library(openxlsx)
# 文件名+sheet的序号
dataset<- read.xlsx("house.xlsx", sheet = 1)
#View(dataset)
datasetsummary(dataset)#####描述性统计分析

具体描述性统计如上,包括各个变量的最大值、最小值、中位数、1/4分位数和3/4分位数等

接下来画出价格、该地区的平均收入的柱状图查看情况:

###画出price柱状图
price<-dataset$Price
pricehead(price,n=100)
barplot(head(price,n=100),xlab="house",ylab="prcie",col="blue",main="房价柱状图(前100个)",border="red")####画出该地区的平均收入柱状图
income<-dataset$AvgAreaIncome
incomehead(income,n=100)
barplot(head(income,n=100),xlab="",ylab="收入",col="pink",main="该地区的平均收入柱状图(前100个)",border="green")

画出特征变量的箱线图,看其分布形状,如图所示: 

由图可得,6个特征变量均分布较好且,存在异常值但是异常值很少。

接下来运用热力图展示出特征变量与响应变量的关系图:

从相关系数热力图可以看出,几乎每个特征变量对房价的相关系数都较高,但是其中该地区的平均收入与房价的相关系数是最高的,为0.64。

再用ggpairs函数展示出变量间的相关性,以及从下图中的相关系数中也可得出其相关性。

 接下来用房价对最初的特征变量进行回归,结果如下:

 图为软件R计算的结果。R²反应了全部6个x与y之间的线性相关水平。其中调整后的拟合优度为0.9179,接近于1,表明该模型对数据的拟合程度比较好,并且可以说明Price的91.79%可由这些因素来解释。P值<0.01,说明p的值非常的小,表明有99%的把握认为至少有一个解释变量是属于这个回归方程的,但这只能说明模型总体是显著的,且*号越多影响越显著。

运用向后逐步回归,每次计算AIC值不断剔除一个变量,利用其余变量进行回归,最终方程为:

接下来进行模型检验

表 1 异方差检验结果

Stufentsized Breusch-Pagan test

Data: fit1

BP= 10.385,  df=4 , p_value=0.03441

 由于p值小于0.05,拒绝原假设,可认为该模型不存在异方差性。

接下来,画出回归值与残差的残差图

五、结论

本次实验完整的研究了多元线性回归模型,首先简单的介绍了多元线性回归模型及其相关的基本理论,然后运用 R 语言实现多元回归模型的拟合,学习了如何求变量间的相关系数矩阵和画散点图矩阵,然后运用 lm 函数拟合回归模型,并运用赤池信息准则选择最优模型,最终对拟合的最优模型进行预测。

代码加数据

代码加数据加报告

创作不易,希望大家多多点赞收藏和评论!

相关文章:

R语言探索与分析14-美国房价及其影响因素分析

一、选题背景 以多元线性回归统计模型为基础&#xff0c;用R语言对美国部分地区房价数据进行建模预测&#xff0c;进而探究提高多元回 归线性模型精度的方法。先对数据进行探索性预处理&#xff0c;随后设置虚拟变量并建模得出预测结果&#xff0c;再使用方差膨胀因子对 多重共…...

golang websocket 数据处理和返回JSON数据示例

golang中websocket数据处理和返回json数据示例&#xff0c; 直接上代码&#xff1a; // author tekintiangmail.com // golang websocket 数据处理和返回JSON数据示例&#xff0c; // 这个函数返回 http.HandlerFunc // 将http请求升级为websocket请求 这个需要依赖第三方包 …...

【Mac】Downie 4 for Mac(视频download工具)兼容14系统软件介绍及安装教程

前言 Downie 每周都会更新一个版本适配视频网站&#xff0c;如果遇到视频download不了的情况&#xff0c;请搜索最新版本https://mac.shuiche.cc/search/downie。 注意&#xff1a;Downie Mac特别版不能升级&#xff0c;在设置中找到更新一列&#xff0c;把自动更新和自动downl…...

【操作系统】进程与线程的区别及总结(非常非常重要,面试必考题,其它文章可以不看,但这篇文章最后的总结你必须要看,满满的全是干货......)

目录 一、 进程1.1 PID(进程标识符)1.2 内存指针1.3 文件描述符表1.4 状态1.5 优先级1.6 记账信息1.7 上下文 二、线程三、总结&#xff1a;进程和线程之间的区别&#xff08;非常非常非常重要&#xff0c;面试必考题&#xff09; 一、 进程 简单来介绍一下什么是进程&#xf…...

自动驾驶仿真(高速道路)LaneKeeping

前言 A high-level decision agent trained by deep reinforcement learning (DRL) performs quantitative interpretation of behavioral planning performed in an autonomous driving (AD) highway simulation. The framework relies on the calculation of SHAP values an…...

数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

分水岭算法分割和霍夫变换识别图像中的硬币

首先解释一下第一种分水岭算法&#xff1a; 一、分水岭算法 分水岭算法是一种基于拓扑学的图像分割技术&#xff0c;广泛应用于图像处理和计算机视觉领域。它将图像视为一个拓扑表面&#xff0c;其中亮度值代表高度。算法的目标是通过模拟雨水从山顶流到山谷的过程&#xff0…...

什么是AVIEXP提前发货通知?

EDI&#xff08;电子数据交换&#xff09;报文是一种用于电子商务和供应链管理的标准化信息传输格式。AVIEXP 是一种特定类型的 EDI 报文&#xff0c;用于传输提前发货通知信息。 AVIEXP 报文简介 AVIEXP 是指 Advanced Shipping Notification提前发货通知报文&#xff0c;用…...

Python 之SQLAlchemy使用详细说明

目录 1、SQLAlchemy 1.1、ORM概述 1.2、SQLAlchemy概述 1.3、SQLAlchemy的组成部分 1.4、SQLAlchemy的使用 1.4.1、安装 1.4.2、创建数据库连接 1.4.3、执行原生SQL语句 1.4.4、映射已存在的表 1.4.5、创建表 1.4.5.1、创建表的两种方式 1、使用 Table 类直接创建表…...

就业班 第四阶段(docker) 2401--5.29 day3 Dockerfile+前后段项目若依ruoyi

通过Dockerfile创建镜像 Docker 提供了一种更便捷的方式&#xff0c;叫作 Dockerfile docker build命令用于根据给定的Dockerfile构建Docker镜像。docker build语法&#xff1a; # docker build [OPTIONS] <PATH | URL | ->1. 常用选项说明 --build-arg&#xff0c;设…...

【运维项目经历|026】Redis智能集群构建与性能优化工程

🍁博主简介: 🏅云计算领域优质创作者 🏅2022年CSDN新星计划python赛道第一名 🏅2022年CSDN原力计划优质作者 🏅阿里云ACE认证高级工程师 🏅阿里云开发者社区专家博主 💊交流社区:CSDN云计算交流社区欢迎您的加入! 目…...

Linux编程for、while循环if判断以及case语句用法

简介 语法描述if条件语句if else条件判断语句if else-if else多条件判断语句for循环执行命令while循环执行命令until直到条件为真时停止循环case ... esac多选择语句break跳出循环continue跳出当前循环 1. for 循环 for语句&#xff0c;定量循环&#xff0c;可以遍历一个列表…...

docker命令 docker ps -l (latest)命令在 Docker 中用于列出最近一次创建的容器

文章目录 12345 1 docker ps -l 命令在 Docker 中用于列出最近一次创建的容器。具体来说&#xff1a; docker ps&#xff1a;这个命令用于列出当前正在运行的容器。-l 或 --latest&#xff1a;这个选项告诉 docker ps 命令只显示最近一次创建的容器&#xff0c;不论该容器当前…...

inflight 守恒和带宽资源守恒的有效性

接着昨天的问题&#xff0c;inflight 守恒的模型一定存在稳定点吗&#xff1f;并不是。如果相互抑制强度大于自我抑制强度&#xff0c;系统也会跑飞&#xff1a; 模拟结果如下&#xff1a; 所以一定要记得 a < b。 比对前两个图和后两个图的 a&#xff0c;b 参数关系&am…...

短视频直播教学课程小程序的作用是什么

只要短视频/直播做的好&#xff0c;营收通常都不在话下&#xff0c;近些年&#xff0c;线上自媒体行业热度非常高&#xff0c;每条细分赛道都有着博主/账号&#xff0c;其各种优势条件下也吸引着其他普通人冲入。 然无论老玩家还是新玩家&#xff0c;面对平台不断变化的规则和…...

Open AI又出王炸GPT-4,目测一大波人的饭碗要碎了...

前言 在科技的惊涛骇浪中&#xff0c;每一次技术的飞跃都预示着新时代的曙光。近日&#xff0c;Open AI公司再次震撼业界&#xff0c;推出了其最新力作——GPT-4&#xff0c;这款被誉为“王炸”的语言模型&#xff0c;以其前所未有的智能水平和创造力&#xff0c;不仅在技术圈…...

8086 汇编笔记(八):转移指令的原理

一、操作符 offset 操作符offset在汇编语言中是由编译器处理的符号&#xff0c;它的功能是取得标号的偏移地址 codesg segmentstart: mov ax,offset start ;相当于 mv ax,0s: mov ax,offset s ;相当于 mv ax,3codesg endsend start 二、jmp 指令 jmp为无条件…...

win 系统 cmd 命令从私库上传,下载jar包

1. 确保maven环境变量或者maven安装无误&#xff1b; 2.私库下载 命令 mvn dependency:get -DgroupId<your_group_id> -DartifactId<your_artifact_id> -Dversion<your_version> -Dpackagingjar -Dfile<path_to_your_jar_file> -Durl<your_privat…...

dots_image 增强图像中的圆点特征

dots_image 增强图像中的圆点特征 1. dot_image 有什么用途&#xff1f;2. 点状字符的特征增强3. Halcon代码 1. dot_image 有什么用途&#xff1f; Enhance circular dots in an image. 这个算子可以增强图像中的圆点特征&#xff0c;例如下面的例子。 2. 点状字符的特征增强…...

代码随想录算法训练营第十五天| 110.平衡二叉树、 257. 二叉树的所有路径、404.左叶子之和

110.平衡二叉树 题目链接&#xff1a;110.平衡二叉树 文档讲讲&#xff1a;代码随想录 状态&#xff1a;还可以 思路&#xff1a;计算左右子树的深度差&#xff0c;递归判断左右子树是否符合平衡条件 题解&#xff1a; public boolean isBalanced(TreeNode root) {if (root n…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)

漏洞概述 漏洞名称&#xff1a;Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号&#xff1a;CVE-2023-25194 CVSS评分&#xff1a;8.8 影响版本&#xff1a;Apache Kafka 2.3.0 - 3.3.2 修复版本&#xff1a;≥ 3.4.0 漏洞类型&#xff1a;反序列化导致的远程代…...