当前位置: 首页 > news >正文

【猫狗识别系统】图像识别Python+TensorFlow+卷积神经网络算法+人工智能深度学习

猫狗识别系统。通过TensorFlow搭建MobileNetV2轻量级卷积神经算法网络模型,通过对猫狗的图片数据集进行训练,得到一个进度较高的H5格式的模型文件。然后使用Django框架搭建了一个Web网页端可视化操作界面。实现用户上传一张图片识别其名称。

一、前言

本研究中,我们开发了一个基于深度学习的猫狗识别系统,使用了TensorFlow框架下的MobileNetV2轻量级卷积神经网络模型。MobileNetV2模型以其高效的结构和较低的计算成本而闻名,非常适合在移动和嵌入式设备上使用。通过对数千张标记好的猫狗图片进行训练,最终生成了一个准确率较高的模型文件(H5格式),可以有效地区分猫和狗的图像。
此外,为了提高用户体验和系统的实用性,我们使用Django框架搭建了一个简洁的Web应用界面。该界面允许用户上传图片,并即时显示模型的识别结果。Django框架的选择是因为其稳定性以及对动态网页应用的良好支持。用户界面设计简洁直观,用户可通过几个简单步骤上传图片并获取识别结果,整个过程无需用户具备深度学习或编程的背景知识。
系统的核心功能是图像识别,我们实现了一个后端处理流程,包括图片的预处理、模型加载和结果输出。图片预处理保证输入模型的图像符合MobileNetV2的输入要求,如大小调整和归一化。一旦上传的图片被处理和输入模型,模型会输出其预测结果,随后结果将被反馈至前端显示。
总的来说,本系统提供了一个高效、用户友好的平台,用于区分猫和狗的图像。该系统的开发展示了深度学习技术在实际应用中的潜力,尤其是在动物识别和其他图像分类任务中。未来的工作将包括进一步优化模型的准确率和处理速度,以及扩展系统的功能,如增加更多类型的动物识别等。

二、系统效果图片展示

img_06_03_21_45_15

img_06_03_21_45_35

img_06_03_21_45_51

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/lbefvlirb7om53fm

四、MobileNetV2介绍

MobileNetV2是一种流行的轻量级深度神经网络架构,主要设计目的是优化运行效率,使其能够在资源受限的设备上运行,如智能手机和其他移动设备。这一模型由Google的研究者在2018年开发,是MobileNet架构的改进版本。
MobileNetV2的核心特点是使用了倒置残差结构(inverted residuals)和线性瓶颈(linear bottlenecks)。在这种结构中,输入和输出通过薄瓶颈层连接,而内部则扩展到有较多通道的层,这有助于信息在网络中的传递并减少信息损失。此外,MobileNetV2引入了可调节的深度可分离卷积(depthwise separable convolution),这种卷积可以显著减少模型的参数数量和计算成本,同时几乎不牺牲性能。
MobileNetV2的另一个特点是它在多个标准数据集上显示出了良好的性能,同时保持了较低的延迟和小的模型大小,这使其非常适合在实时应用中使用。
下面是一个简单的MobileNetV2模型实现案例,用于加载预训练的MobileNetV2模型并对输入的图片进行分类:


import numpy as np
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions# 加载预训练的MobileNetV2模型
model = MobileNetV2(weights='imagenet')# 加载并预处理图片
img_path = 'path_to_your_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)# 使用模型进行预测
preds = model.predict(x)# 输出预测结果
print('Predicted:', decode_predictions(preds, top=3)[0])

这段代码首先加载了一个预训终的MobileNetV2模型,然后加载一张图片并进行适当的预处理,最后使用模型对这张图片进行分类,并打印出最可能的三个预测结果。

相关文章:

【猫狗识别系统】图像识别Python+TensorFlow+卷积神经网络算法+人工智能深度学习

猫狗识别系统。通过TensorFlow搭建MobileNetV2轻量级卷积神经算法网络模型,通过对猫狗的图片数据集进行训练,得到一个进度较高的H5格式的模型文件。然后使用Django框架搭建了一个Web网页端可视化操作界面。实现用户上传一张图片识别其名称。 一、前言 …...

记录汇川:红绿灯与HMI-ST

项目要求: 子程序: 子程序: 实际动作如下: 红绿灯与HMI-ST...

已解决java.nio.charset.CoderMalfunctionError: 编码器故障错误的正确解决方法,亲测有效!!!

已解决java.nio.charset.CoderMalfunctionError: 编码器故障错误的正确解决方法,亲测有效!!! 亲测有效 报错问题解决思路解决方法1. 检查和清理输入数据2. 选择正确的字符集3. 处理异常情况4. 更新Java版本或库5. 检查第三方库的依…...

Linux 中常用的设置、工具和操作

1.设置固定的ip地址步骤 1.1 添加IPADDR“所设置的固定ip地址” TYPE"Ethernet" PROXY_METHOD"none" BROWSER_ONLY"no" BOOTPROTO"static" DEFROUTE"yes" IPV4_FAILURE_FATAL"no" IPV6INIT"yes" IPV6…...

[论文笔记]AIOS: LLM Agent Operating System

引言 这是一篇有意思的论文AIOS: LLM Agent Operating System,把LLM智能体(代理)看成是操作系统。 基于大语言模型(LLMs)的智能代理的集成和部署过程中存在着许多挑战,其中问题包括代理请求在LLM上的次优调度和资源分配,代理和LLM之间在交互…...

2024全国高考作文题解读(文心一言 4.0版本)

新课标I卷 阅读下面的材料,根据要求写作。(60分) 随着互联网的普及、人工智能的应用,越来越多的问题能很快得到答案。那么,我们的问题是否会越来越少? 以上材料引发了你怎样的联想和思考?请写…...

【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目

车牌识别基础功能演示 摘要:车牌识别系统(Vehicle License Plate Recognition,VLPR) 是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通…...

TESSENT2024.1安装

一、安装过程参考Calibre安装过程(此处省略,不再赘述) 二、安装license管理器: SiemensLicenseServer_v2.2.1.0_Lnx64_x86-64.bin 三、Patch补丁: tessent安装目录和license管理安装目录,执行FlexNetLic…...

【机器学习】原理与应用场景 Python代码展现

机器学习:原理、应用与实例深度解析 引言一、机器学习的基本原理二、机器学习的应用范围三、机器学习实例解析四、机器学习部分讲解五、机器学习的挑战与未来 引言 随着大数据和计算能力的飞速发展,机器学习(Machine Learning, ML&#xff0…...

Python怎么循环计数:深入解析与实践

Python怎么循环计数:深入解析与实践 在Python编程中,循环计数是一项基础且重要的技能。无论是处理列表、遍历文件,还是执行重复任务,循环计数都发挥着不可或缺的作用。本文将从四个方面、五个方面、六个方面和七个方面详细阐述Py…...

Facebook企业户 | Facebook公共主页经营

Facebook作为社交媒体巨头,拥有庞大的用户基数,因此,有效经营公共主页是获取持续流量、提升客户信任度和粘性、促进产品或服务销售与转化的关键。要优化Facebook主页,关注以下几点: 1、参与度是关键指标:因…...

排序数组 ---- 分治-归并

题目链接 题目: 分析: 用这道题来回顾一下归并排序的思想找到中间结点, 将数组分成两半, 运用递归的思想, 继续对一半进行分半, 分到最后剩一个元素, 再将左右数组合并, 合并两个有序数组, 是先分解, 再合并的过程在合并两个有序数组时, 需要一个额外的数组来记录, 为了避免每…...

【红黑树变色+旋转】

文章目录 一. 红黑树规则二. 情况一叔叔存在且为红情况二.变色旋旋 一. 红黑树规则 对于红黑树,进行变色旋转处理,终究都是为了维持颜色以下几条规则,只有颜色和规则维持住了,红黑树就维持住了最长路径的长度不超过最短路径的两倍…...

pytorch 使用tensor混合:进行index操作

(Pdb) tmp torch.randn(3,5) (Pdb) indx torch.tensor([1,0]).long() (Pdb) temp(indx) *** NameError: name ‘temp’ is not defined (Pdb) tmp(indx) *** TypeError: ‘Tensor’ object is not callable (Pdb) tmp[indx] tensor([[ 0.1633, 0.9389, 1.2806, -0.2525, 0.28…...

Threejs(WebGL)绘制线段优化:Shader修改gl.LINES模式为gl.LINE_STRIP

目录 背景 思路 Threejs实现 记录每条线的点数 封装原始裁剪索引数据 封装合并几何体的缓冲数据:由裁剪索引组成的 IntArray 守住该有的线段! 修改顶点着色器 修改片元着色器 完整代码 WebGL实现类似功能(简易版,便于测…...

继承-进阶

父子类成员共享 普通成员对象/父子间不共享, 成员独立 函数成员共享(函数不存储在对象中) 子类由两部分构成:父类中继承的成员和子类中新定义成员 继承方式 子类中存在父类private成员但不可直接访问(及时在类中&am…...

探索k8s集群的配置资源(secret和configmap)

目录 ConfigMap ConfigMap(主要是将配置目录或者文件挂载到k8s里面使用) 与Secret类似,区别在于ConfigMap保存的是不需要加密配置的信息。(例如:配置文件) ConfigMap 功能在 Kubernetes1.2 版本中引入&…...

如何设置vue3项目中默认的背景为白色

方法1:通过CSS全局样式 在全局CSS文件中设置: 如果你的项目中有全局的CSS文件(如App.vue或专门的CSS文件),你可以直接设置body或html标签的背景颜色。 在src/assets文件夹中(或者任何你存放CSS文件的地方&a…...

MS1112驱动开发

作者简介: 一个平凡而乐于分享的小比特,中南民族大学通信工程专业研究生在读,研究方向无线联邦学习 擅长领域:驱动开发,嵌入式软件开发,BSP开发 作者主页:一个平凡而乐于分享的小比特的个人主页…...

K8s存储对象的使用

背景和概念 容器中的文件在磁盘上是临时存放的,这给在容器中运行较重要的应用带来一些问题: 当容器崩溃或停止时,此时容器状态未保存, 因此在容器生命周期内创建或修改的所有文件都将丢失。另外 在崩溃期间,kubelet 会…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

微信小程序云开发平台MySQL的连接方式

注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...