当前位置: 首页 > news >正文

排序数组 ---- 分治-归并

题目链接

题目:

分析:

  • 用这道题来回顾一下归并排序的思想
  • 找到中间结点, 将数组分成两半, 运用递归的思想, 继续对一半进行分半, 分到最后剩一个元素, 再将左右数组合并, 合并两个有序数组, 是先分解, 再合并的过程
  • 在合并两个有序数组时, 需要一个额外的数组来记录, 为了避免每次递归都要创建一个新数组浪费空间, 可以将数组定义在全局变量

代码:

class Solution {int[] tmp;public int[] sortArray(int[] nums) {tmp = new int[nums.length];mergeSort(nums, 0, nums.length - 1);return nums;}public void mergeSort(int[] nums, int left, int right) {if (left >= right)return;
//找中间点int mid = left + ((right - left) >> 1);
//划分左边mergeSort(nums, left, mid);
//划分右边mergeSort(nums, mid + 1, right);
//对有序数组进行合并int cur1 = left;int cur2 = mid + 1;int i = 0;while (cur1 <= mid && cur2 <= right) {tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];}while (cur1 <= mid)tmp[i++] = nums[cur1++];while (cur2 <= right)tmp[i++] = nums[cur2++];for (int j = left; j <= right; j++) {nums[j] = tmp[j - left];}}
}

 

相关文章:

排序数组 ---- 分治-归并

题目链接 题目: 分析: 用这道题来回顾一下归并排序的思想找到中间结点, 将数组分成两半, 运用递归的思想, 继续对一半进行分半, 分到最后剩一个元素, 再将左右数组合并, 合并两个有序数组, 是先分解, 再合并的过程在合并两个有序数组时, 需要一个额外的数组来记录, 为了避免每…...

【红黑树变色+旋转】

文章目录 一. 红黑树规则二. 情况一叔叔存在且为红情况二.变色旋旋 一. 红黑树规则 对于红黑树&#xff0c;进行变色旋转处理&#xff0c;终究都是为了维持颜色以下几条规则&#xff0c;只有颜色和规则维持住了&#xff0c;红黑树就维持住了最长路径的长度不超过最短路径的两倍…...

pytorch 使用tensor混合:进行index操作

(Pdb) tmp torch.randn(3,5) (Pdb) indx torch.tensor([1,0]).long() (Pdb) temp(indx) *** NameError: name ‘temp’ is not defined (Pdb) tmp(indx) *** TypeError: ‘Tensor’ object is not callable (Pdb) tmp[indx] tensor([[ 0.1633, 0.9389, 1.2806, -0.2525, 0.28…...

Threejs(WebGL)绘制线段优化:Shader修改gl.LINES模式为gl.LINE_STRIP

目录 背景 思路 Threejs实现 记录每条线的点数 封装原始裁剪索引数据 封装合并几何体的缓冲数据&#xff1a;由裁剪索引组成的 IntArray 守住该有的线段&#xff01; 修改顶点着色器 修改片元着色器 完整代码 WebGL实现类似功能&#xff08;简易版&#xff0c;便于测…...

继承-进阶

父子类成员共享 普通成员对象/父子间不共享&#xff0c; 成员独立 函数成员共享&#xff08;函数不存储在对象中&#xff09; 子类由两部分构成&#xff1a;父类中继承的成员和子类中新定义成员 继承方式 子类中存在父类private成员但不可直接访问&#xff08;及时在类中&am…...

探索k8s集群的配置资源(secret和configmap)

目录 ConfigMap ConfigMap&#xff08;主要是将配置目录或者文件挂载到k8s里面使用&#xff09; 与Secret类似&#xff0c;区别在于ConfigMap保存的是不需要加密配置的信息。&#xff08;例如&#xff1a;配置文件&#xff09; ConfigMap 功能在 Kubernetes1.2 版本中引入&…...

如何设置vue3项目中默认的背景为白色

方法1&#xff1a;通过CSS全局样式 在全局CSS文件中设置&#xff1a; 如果你的项目中有全局的CSS文件&#xff08;如App.vue或专门的CSS文件&#xff09;&#xff0c;你可以直接设置body或html标签的背景颜色。 在src/assets文件夹中&#xff08;或者任何你存放CSS文件的地方&a…...

MS1112驱动开发

作者简介&#xff1a; 一个平凡而乐于分享的小比特&#xff0c;中南民族大学通信工程专业研究生在读&#xff0c;研究方向无线联邦学习 擅长领域&#xff1a;驱动开发&#xff0c;嵌入式软件开发&#xff0c;BSP开发 作者主页&#xff1a;一个平凡而乐于分享的小比特的个人主页…...

K8s存储对象的使用

背景和概念 容器中的文件在磁盘上是临时存放的&#xff0c;这给在容器中运行较重要的应用带来一些问题&#xff1a; 当容器崩溃或停止时&#xff0c;此时容器状态未保存&#xff0c; 因此在容器生命周期内创建或修改的所有文件都将丢失。另外 在崩溃期间&#xff0c;kubelet 会…...

构建自动化API数据抓取系统

构建一个自动化API数据抓取系统是一个涉及多个技术领域的复杂任务。这样的系统不仅要求高效的数据获取能力&#xff0c;还需要有稳定的数据处理、存储和错误处理机制。 1. 需求分析 在开始构建之前&#xff0c;明确你的需求至关重要。你需要确定要抓取的API、数据的频率、数据的…...

【Qt知识】部分QWidget属性表格

QWidget是Qt库中所有图形用户界面组件的基类&#xff0c;它提供了大量属性以供自定义和配置控件的行为和外观。下面列出了一些主要的QWidget属性及其作用。 属性 作用 accessibleName 控件的辅助技术名称&#xff0c;用于无障碍访问。 accessibleDescription 控件的辅助技…...

【ARM64 常见汇编指令学习 19.1 -- ARM64 跳转指令 b.pl 详细介绍】

文章目录 ARM64 跳转指令 b.pl使用场景语法示例总结 ARM64 跳转指令 b.pl 在 ARMv8 架构中&#xff0c;b.pl 是一条条件分支&#xff08;Branch&#xff09;指令&#xff0c;它根据当前的状态寄存器中的条件标志执行跳转。b.pl 的全称是 Branch if Plus&#xff0c;即如果条件…...

WWDC24即将到来,ios18放大招

苹果公司即将在下周开全球开发者大会(WWDC)&#xff0c;大会上将展示其人工智能技术整合到设备和软件中的重大进展,包括与OpenAI的历史性合作。随着大会的临近,有关iOS 18及其据称采用AI技术支持的应用程序和功能的各种泄露信息已经浮出水面。 据报道,苹果将利用其自主研发的大…...

C#中的空合并运算符与空合并赋值运算符:简化空值处理

在C#编程中&#xff0c;处理可能为null的值是一项常见的任务&#xff0c;尤其是在涉及数据库查询、Web服务调用或任何可能返回缺失数据的场景中。为了简化这类操作并提高代码的可读性&#xff0c;C# 8 引入了两个非常实用的运算符&#xff1a;空合并运算符 (??) 和 空合并赋值…...

数据结构:哈夫曼树及其哈夫曼编码

目录 1.哈夫曼树是什么&#xff1f; 2.哈夫曼编码是什么&#xff1f; 3.哈夫曼编码的应用 4.包含头文件 5.结点设计 6.接口函数定义 7.接口函数实现 8.哈夫曼编码测试案列 哈夫曼树是什么&#xff1f; 哈夫曼树&#xff08;Huffman Tree&#xff09;是一种特殊的二叉树&#xf…...

微信如何防止被对方拉黑删除?一招教你解决!文末附软件!

你一定不知道&#xff0c;微信可以防止被对方拉黑删除&#xff0c;秒变无敌。只需一招就能解决&#xff01;赶快来学&#xff01;文末有惊喜&#xff01; 惹到某些重要人物&#xff08;比如女朋友&#xff09;&#xff0c;被删除拉黑一条龙&#xff0c;那真的是太令人沮丧了&a…...

jar增量打包

jar增量打包 Linux环境下&#xff1a; 1.解压缩 jar -xvf jarname.jar&#xff08;解压&#xff09;2.打包 这时可以把要替换的lib包的内容粘帖进去&#xff0c;然后重新打jar包 jar -cvf0M jarname.jar .&#xff08;重新压缩,-0是主要的&#xff09;jar命令&#xff1a; …...

智慧医院物联网建设-统一管理物联网终端及应用

近年来&#xff0c;国家卫健委相继出台的政策和评估标准体系中&#xff0c;都涵盖了强化物联网建设的内容。物联网建设已成为智慧医院建设的核心议题之一。 作为医院高质量发展的关键驱动力&#xff0c;物联网的顶层设计与网络架构设计规划&#xff0c;既需要结合现代信息技术的…...

Debian的常用命令

Debian作为一个稳定、安全且高效的Linux发行版,被广泛应用于服务器和桌面操作系统中。对于系统管理员和开发者来说,熟练掌握Debian的常用命令能够大大提升工作的效率和系统的管理水平。本文将详细介绍一些常见且实用的Debian命令,帮助新手更好地管理和操作Debian系统。 系统…...

矩阵1-范数与二重求和的求和可交换

矩阵1-范数与二重求和的求和可交换 1、矩阵1-范数 A [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A \begin{bmatrix} a_{11} &a_{12} &\cdots &a_{1n} \\ a_{21} &a_{22} &\cdots &a_{2n} \\ \vdots &\vdots …...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...