【TensorFlow深度学习】实现Actor-Critic算法的关键步骤
实现Actor-Critic算法的关键步骤
- 实现Actor-Critic算法的关键步骤:强化学习中的双剑合璧
- Actor-Critic算法简介
- 关键实现步骤
- 代码示例(使用TensorFlow)
- 结语
实现Actor-Critic算法的关键步骤:强化学习中的双剑合璧
在强化学习的广阔天地中,Actor-Critic算法以独特的双轨制胜场,融合了价值方法的稳健性和策略梯度方法的直接性,成为了复杂环境决策问题的得力助手。本文将详细拆解Actor-Critic算法的结构,揭示其如何巧妙结合价值评估(Critic)与策略优化(Actor),并通过Python代码实例,带你领略其实现的要领。
Actor-Critic算法简介
Actor-Critic算法的核心在于将学习过程分为两部分:
- Actor负责学习采取行动**,基于当前策略选择行为;
- Critic则评估这个行动**,给出反馈,即该行动的好坏程度(值函数)。
这种分工合作的机制,既直接优化了策略(Actor),又提供了高效的价值评估(Critic),在连续动作空间和高维度状态空间中尤为有效。
关键实现步骤
- 环境交互:定义环境接口,收集经验。
- 策略网络(Actor):构建策略网络,输出动作。
- 值函数网络(Critic):构建价值网络,评估策略。
- 损失函数:定义Actor和Critic的更新准则。
- 优化器:选择合适的优化算法更新网络参数。
- 经验回放:存储与采样。
- 更新:迭代优化网络。
代码示例(使用TensorFlow)
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam# 定义超参数
learning_rate = 0.001
gamma = 0.99 # 折扣因子
tau = 0.01 # 目标网络软更新参数# 环境交互接口模拟
class Environment:def step(self, action): pass# 返回状态, 奖赏, 是否结束, 信息def reset(self): pass # 初始化环境# 构建Actor网络
class Actor(Model):def __init__(self):super().__init__()self.fc1 = Dense(64, activation='relu')self.fc2 = Dense(action_dim, activation='tanh')def call(self, state):x = self.fc1(state)x = self.fc2(x)return x# 构建Critic网络
class Critic(Model):def __init__(self):super().__init__()self.fc1 = Dense(64, activation='relu')self.fc2 = Dense(1)def call(self, state, action):x = tf.concat([state, action], axis=-1)x = self.fc1(x)x = self.fc2(x)return x# 初始化
actor = Actor()
critic = Critic()
target_actor = Actor()
target_critic = Critic()# 复制权重到目标网络
target_actor.set_weights(actor.get_weights())
target_critic.set_weights(critic.get_weights())# 优化器
actor_opt = Adam(learning_rate)
critic_opt = Adam(learning_rate)# 训练习循环
for episode in range(episodes):state = env.reset()done = Falsetotal_reward = 0while not done:# 采取行动action = actor(state) + noise # 添加噪声探索next_state, reward, done, _ = env.step(action)# 计算TD目标target = reward + gamma * target_critic(next_state, target_actor(next_state))# Critic更新with tf.GradientTape() as tape:critic_loss = tf.reduce_mean(tf.square(target - critic(state, action))critic_grad = tape.gradient(critic_loss, critic.trainable_variables)critic_opt.apply_gradients(zip(critic_grad, critic.trainable_variables))# Actor更新with tf.GradientTape() as tape:actor_loss = -tf.reduce_mean(critic(state, actor(state)) # 最大化价值actor_grad = tape.gradient(actor_loss, actor.trainable_variables)actor_opt.apply_gradients(zip(actor_grad, actor.trainable_variables))# 软更新目标网络update_target(target_actor.variables, actor.variables, tau)update_target(target_critic.variables, critic.variables, tau)state = next_statetotal_reward += rewardprint(f"Episode {episode}, Total Reward: {total_reward}")
结语
Actor-Critic算法通过将策略优化与价值评估的双重优势融于一体,实现了策略搜索的高效迭代。本代码示例简要地呈现了如何搭建这样的框架,从环境交互到网络设计、损失定义,再到优化策略更新与目标网络同步。实践中,还需根据具体任务调整网络架构、超参数和探索策略,以应对复杂环境的挑战。希望这一旅程能激发你对强化学习的深入探索,解锁更多智能决策的奥秘。
相关文章:
【TensorFlow深度学习】实现Actor-Critic算法的关键步骤
实现Actor-Critic算法的关键步骤 实现Actor-Critic算法的关键步骤:强化学习中的双剑合璧Actor-Critic算法简介关键实现步骤代码示例(使用TensorFlow)结语 实现Actor-Critic算法的关键步骤:强化学习中的双剑合璧 在强化学习的广阔…...

微服务架构-可见可观测与量化分析体系
目录 一、可见可观测 1.1 概述 1.2 服务可见性 1.2.1 概述 1.2.2 服务描述 1.2.3 服务所有权 1.2.4 服务对外接口 1.2.5 服务SLA 1.2.6 服务的上下游拓扑 1.2.7 服务变更 1.2.8 服务接入和资源配额管理 1.2.9 服务线上部署和线下测试环境信息 1.3 变更可见性 1.4 …...
PostgreSQL的视图pg_indexes
PostgreSQL的视图pg_indexes 基础信息 OS版本:Red Hat Enterprise Linux Server release 7.9 (Maipo) DB版本:16.2 pg软件目录:/home/pg16/soft pg数据目录:/home/pg16/data 端口:5777pg_indexes 是 PostgreSQL 中的一…...

暂停系统更新
电脑左下角搜索注册表编辑器 计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsUpdate\UX\Settings 找到这个目录 打开FlightSettingsMaxPauseDays,没找到的话就创建一个同名文件夹然后选择10进制填入3550 最后进入系统暂停更新界面选择最下面…...

Python离线查询IP地址对应的国家和城市
使用场景: 在没网的情况下使用python代码实现对ip地址进行查询国家和地市 代码实现: 需要安装 pip install geoip2 库 import geoip2.databasedef get_location_by_ip(ip_address, db_path):reader geoip2.database.Reader(db_path)try:response r…...

使用Aspose技术将Excel/Word转换为PDF
简介:本文将介绍如何使用Aspose技术将Excel文件转换为PDF格式。我们将使用Aspose-Cells-8.5.2.jar包,并演示Java代码以及进行测试。 一、Aspose技术概述 Aspose是一款强大的文档处理库,支持多种编程语言,如Java、C#、Python等。…...

Opencv 色彩空间
一 核心知识 色彩空间变换; 像素访问; 矩阵的、-、*、、; 基本图形的绘制 二 颜色空间 RGB:人眼的色彩空间; OpenCV默认使用BGR; HSV/HSB/HSL; YUV(视频); 1 RGB 2 BGR 图像的多种属性 1 访问图像(Ma…...

FileZilla:不安全的服务器,不支持 FTP over TLS 原因与解决方法
今天在用FileZilla Client连接某个主机的FTP的时候,主机地址、账号、密码、端口确定百分之百正确的情况下,结果报错如下: 状态: 正在解析 x.x.x 的地址 状态: 正在连接 x.x.x.x:21... 状态: 连接建立,等待欢迎消息... 状态: 不安全…...
自定义注解实现Excel 导出
概述 一个用自定义注解实现导出字段定义的工具实现。 1. 注解定义,定义导出Excel的字段 Target(ElementType.FIELD) Retention(RetentionPolicy.RUNTIME) public interface PoiExportField {// Label of the columnString label();// Order of the column,default 0,means t…...

先求生存,再谋发展:俞敏洪的创业哲学与产品创新之路
引言: 在创业的道路上,每一个创业者都面临着无数的挑战和选择。俞敏洪,新东方教育科技集团的创始人,以其独特的创业哲学和坚韧不拔的精神,带领新东方从一个小小的培训机构成长为全球知名的教育品牌。他的成功经验告诉…...
【Spark】直接从DataFrame的schema创建表
// 基于DataFrame创建表 def createTable(dataFrame: DataFrame,partitionColumns: Array[String],databaseName: String,tableName: String): Unit = {...
Decimal要从str转换以避免精度问题
最近遇到一个python的小数的问题,本来应该很简单的小于判断,无论如何都不正确,而且浮点小数都没问题,但decimal小数有问题,给我整蒙了,后来才发现是对decimal不了解所致,如果你还用float转decim…...

STM32项目分享:智能家居安防系统
目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 1.PCB图 2.PCB板及元器件图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片: 哔哩哔哩视频链接: https://www.bilibili.c…...
qt c++类继承QWidget和不继承有什么区别
class CheckBoxSetting {Q_OBJECT public:CheckBoxSetting(); };和 class CheckBoxSettingsEditor : public QWidget {Q_OBJECTpublic:explicit CheckBoxSettingsEditor(QWidget *parent 0);~CheckBoxSettingsEditor();有什么区别? 这两个类 CheckBoxSetting 和 C…...

什么是SIEM
SIEM 解决方案是一种企业级应用程序,可集中和自动化与网络安全相关的操作,该工具通过收集、分析和关联从组织 IT 基础设施中的各种实体聚合的网络事件来帮助应对网络威胁。 与帮助监控和评估组织物理空间中的危险的监视控制台相比,SIEM解决方…...
浅谈一下实例化
实例化对象是面向对象编程中非常重要的概念,它允许我们根据类的定义创建具体的对象,并操作这些对象的属性和方法。下面具体谈一下实例化对象的一些特点和用途: 封装性和复用性:实例化对象可以将数据和行为封装在一起,从…...

【人工智能】第三部分:ChatGPT的应用场景和挑战
人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…...
FLV 文件格式
FLV 总体结构 FLV 文件由 FLV文件头(FLV Header)和 FLV文件体(FLV Body)组成。 FLV 文件体由若干级联的 FLV标签(FLV Tag)组成。标签使用一个 PreviousTagSize(uint32_t)来保存前一个 FLV 标签的大小,第一个 PreviousTagSize 值为0。 一个 FLV 文件中的所有数据,如 视频…...

FENDI CLUB精酿啤酒品鉴体验
当提及“品质卓越,口感非凡”的啤酒时,FENDI CLUB精酿啤酒无疑是一个值得一试的选择。这款啤酒以其独特的酿造工艺和优质的原料,为消费者带来了与众不同的味觉享受。 一、独特的酿造工艺 FENDI CLUB精酿啤酒在酿造过程中,严格遵循…...

前端 CSS 经典:水波进度样式
前言:简单实现水波进度样式,简单好看。 效果图: 代码实现: <!DOCTYPE html> <html lang"en"><head><meta charset"utf-8" /><meta http-equiv"X-UA-Compatible" cont…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...

jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
大数据治理的常见方式
大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法,以下是几种常见的治理方式: 1. 数据质量管理 核心方法: 数据校验:建立数据校验规则(格式、范围、一致性等)数据清洗&…...