当前位置: 首页 > news >正文

中缀表达式和前缀后缀

在这里插入图片描述
在中缀表达式中,操作数可能与两个操作符相结合
但是,想要不带括号无歧义,且不需要考虑运算符优先级和结合性
所以考虑
前缀表达式,波兰表达式
后缀表达式 逆波兰表达式
对于人来说,中缀表达式是最容易读懂的。但是对于机器来说,想要省略掉括号那部分内存,就要用前缀表达式和后缀表达式
从编程的角度来讲,后缀表达式最容易解析,求值的时间和内存的代价最小

在这里插入图片描述

后缀表达式的求值

从左往右
遇到操作数则压栈,遇到操作符弹出两个操作数并将结果压入栈
最后取栈顶作为结果

前缀表达式

从右往左
遇到操作数则压栈,遇到操作符弹出两个操作数并将结果压入栈
最后取栈顶作为结果

相关文章:

中缀表达式和前缀后缀

在中缀表达式中,操作数可能与两个操作符相结合 但是,想要不带括号无歧义,且不需要考虑运算符优先级和结合性 所以考虑 前缀表达式,波兰表达式 后缀表达式 逆波兰表达式 对于人来说,中缀表达式是最容易读懂的。但是对于…...

强化学习面试题

强化学习面试题通常会涵盖该领域的多个方面,包括基本概念、算法、应用以及实践问题。以下是一些常见的强化学习面试题及其简要回答: 基本概念题: 什么是强化学习? 强化学习是一种通过智能体与环境交互来学习最优行为策略的机器学习范式。智能体根据当前状态选择动作,环境…...

Pytorch中的广播机制

一、广播(broadcast)机制概述 在PyTorch中,广播机制(Broadcast)允许对不同形状的张量执行逐元素操作,而无需显式地复制数据。这一机制使得编写代码更加简洁和高效。广播机制遵循一定的规则来扩展较小的张量,使其与较大的张量具有相同的形状 …...

2024年全国一高考数学压轴题

(3) 证明: 显然, 等差数列 { a 1 , . . . , a 4 n 2 } \{a_{1},...,a_{4n2}\} {a1​,...,a4n2​} 是 ( i , j ) (i, j) (i,j)-可分的等价于等差数列 { 1 , . . . , 4 n 2 } \{1,...,4n2\} {1,...,4n2} 是 ( i , j ) (i,j) (i,j)-可分的. 前推后显然, 我们考虑后推前, 在去…...

springboot+vue前后端项目接口校验通信数据完整性

方案&#xff1a;使用国密SM3算法实现数字签名 服务端 maven的pom文件引用 <!-- 国密算法支持 --><dependency><groupId>org.bouncycastle</groupId><artifactId>bcprov-jdk15to18</artifactId><version>1.69</version><…...

进程通信(IPC-Inter Process Communication)

进程之间的通信通过内核空间实现 IPC技术 ①管道(匿名管道/命名管道-FIFO队列) ②System V IPC(消息队列、信号量和共享内存) ③套接字(UNIX套接字&Internet套接字) ※信号 软中断&#xff0c;信号提供了一种处理异步事件的方法&#xff0c;作为进程通信的一种机制&am…...

idea debug时提示”Method breakpoints may dramatically slow down debugging“的解决办法

问题现象 今天同事喊我过去看一个问题&#xff0c;项目正常启动的时候没问题&#xff0c;debug模式就卡住了&#xff0c;很久不动。我推测是哪个断点导致的&#xff0c;一看断点果然有情况。在方法上打了断点。 解决方式(Android Studio一样的解决&#xff09; 1、View Brea…...

计算机缺失msvcp100.dll如何解决?教你5种简单高效的修复方法

在现代科技发展的时代&#xff0c;计算机已经成为我们生活和工作中不可或缺的工具。然而&#xff0c;在使用计算机的过程中&#xff0c;我们常常会遇到各种问题和困扰。其中之一就是计算机找不到msvcp100.dll文件。这个问题可能会给我们的生活和工作带来很多不便&#xff0c;下…...

对硬盘的设想2:纸存,硬指针,软指针

“纸存”是设想中的存储器&#xff0c;它只能改写两次&#xff1a;写一次&#xff0c;再改一次&#xff0c;然后就不能再动了。就像拿着钢笔在纸上写字一样&#xff0c;所以叫纸存。 硬指针P、软指针S S abcd S aPcdPx P aPcdPx S aycd ①一个软指针S&#xff0c;指向数据abcd…...

Python在股票交易分析中的应用:布林带与K线图的实战回测

引言 在股票交易的世界中&#xff0c;技术分析是投资者们用来预测市场动向的重要工具。布林带&#xff08;Bollinger Bands&#xff09;作为一种动态波动范围指标&#xff0c;因其直观性和实用性而广受欢迎。本文将通过Python代码&#xff0c;展示如何使用布林带结合K线图来分…...

现代密码学-认证、消息认证码

什么是单向散列函数 单向散列函数&#xff08;one way hash function&#xff09;&#xff1a;一个输入&#xff1a;消息&#xff08;message&#xff09;,一个固定长度的输出(散列值&#xff0c;hash value),根据散列值检查消息完整性(integrity) 单向散列函数也称为消息摘要…...

在Java中为什么对a赋值为10,在进行a++时还是等于10呢

首先我们看这样一组代码 public class demo1 {public static void main(String[] args) {int a10;aa;System.out.println(a);} } 结果&#xff1a;10不是在第二步有a操作吗&#xff1f;为什么还是10呢&#xff1f; a的执行步骤如下&#xff1a; 保存当前a的值&#xff08;即10…...

免费数据库同步软件

在信息化日益发展的今天&#xff0c;数据同步成为了企业和个人用户不可或缺的一部分。数据库同步软件作为数据同步的重要工具&#xff0c;能够帮助我们实现不同数据库系统之间的数据复制和同步&#xff0c;确保数据的一致性和完整性。本文将介绍几款免费数据库同步软件&#xf…...

如何轻松修改Windows远程连接的端口号

为了增强远程连接的安全性&#xff0c;最好修改默认的远程桌面协议&#xff08;RDP&#xff09;端口号。以下步骤将指导您如何修改Windows注册表中的端口设置&#xff0c;并相应地更新防火墙规则。 一、修改注册表中的端口号 打开注册表编辑器&#xff1a; 按下Win R键&#…...

Leetcode 54. 螺旋矩阵(二维数组移动坐标)

54. 螺旋矩阵 使用vis数组记录该位置是否已经被访问 定义一个int型dir来记录方向&#xff0c;0123分别代表右下左上 当越界或碰壁已访问的位置后&#xff0c;修改dir并计算下一个位置 否则根据原dir计算下一个位置 class Solution {public List<Integer> spiralOrder(i…...

深度图的方法实现加雾,Synscapes数据集以及D455相机拍摄为例

前言 在次之前&#xff0c;我们已经做了图像加雾的一些研究&#xff0c;这里我们将从深度图的方法实现加雾展开细讲 图像加雾算法的研究与应用_图像加雾 算法-CSDN博客 接下来将要介绍如何使用深度图像生成雾效图像的方法。利用Synscapes数据集&#xff0c;通过读取EXR格式的…...

QT: 读写ini配置文件(实现qml界面登录,修改)

目录 一.功能介绍 二.暴露属性 三.指定INI文件的路径和格式。 四.登录操作 1.检查INI文件中是否含有登录信息&#xff1b; 2.读取存储的ID&#xff1b; 3.读取存储的密码; 4.成功返回1&#xff1b;失败返回2&#xff1b; 五.修改账号 1.检查INI文件中是否含有登录信…...

DevOps 安全集成:从开发到部署,全生命周期安全守护

目录 一、DevOps 安全集成&#xff1a;为什么要做&#xff1f; 二、DevOps 安全集成&#xff1a;如何做&#xff1f; 三、DevOps 安全集成的优势 四、DevOps 安全集成&#xff1a;一些最佳实践 五、DevOps 安全集成&#xff1a;未来展望 六、思考与建议 七、总结 DevOps…...

R语言数据分析15-xgboost模型预测

XGBoost模型预测的主要大致思路&#xff1a; 1. 数据准备 首先&#xff0c;需要准备数据。这包括数据的读取、预处理和分割。数据应该包括特征和目标变量。 步骤&#xff1a; 读取数据&#xff1a;从CSV文件或其他数据源读取数据。数据清理&#xff1a;处理缺失值、异常值等…...

重构大学数学基础_week04_从点积理解傅里叶变换

这周我们来看一下傅里叶变换。傅里叶变换是一种在数学和许多科学领域中广泛应用的分析方法&#xff0c;它允许我们将信号或函数从其原始域&#xff08;通常是时间域或空间域&#xff09;转换到频域表示。在频域中&#xff0c;信号被表示为其组成频率的幅度和相位&#xff0c;这…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...