matplotlib 动态显示训练过程中的数据和模型的决策边界
文章目录
- Github
- 官网
- 文档
- 简介
- 动态显示训练过程中的数据和模型的决策边界
- 安装
- 源码
Github
- https://github.com/matplotlib/matplotlib
官网
- https://matplotlib.org/stable/
文档
- https://matplotlib.org/stable/api/index.html
简介
matplotlib 是 Python 中最常用的绘图库之一,用于创建各种类型的静态、动态和交互式可视化。
动态显示训练过程中的数据和模型的决策边界

安装
pip install tensorflow==2.13.1
pip install matplotlib==3.7.5
pip install numpy==1.24.3
源码
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap# 生成数据
np.random.seed(0)
num_samples_per_class = 500
negative_samples = np.random.multivariate_normal(mean=[0, 3],cov=[[1, 0.5], [0.5, 1]],size=num_samples_per_class
)
positive_samples = np.random.multivariate_normal(mean=[3, 0],cov=[[1, 0.5], [0.5, 1]],size=num_samples_per_class
)inputs = np.vstack((negative_samples, positive_samples)).astype(np.float32)
targets = np.vstack((np.zeros((num_samples_per_class, 1)), np.ones((num_samples_per_class, 1)))).astype(np.float32)# 将数据分为训练集和测试集
train_size = int(0.8 * len(inputs))
X_train, X_test = inputs[:train_size], inputs[train_size:]
y_train, y_test = targets[:train_size], targets[train_size:]# 构建二分类模型
model = Sequential([# 输入层:输入形状为 (2,)# 第一个隐藏层:包含 4 个节点,激活函数使用 ReLUDense(4, activation='relu', input_shape=(2,)),# 输出层:包含 1 个节点,激活函数使用 Sigmoid(因为是二分类问题)Dense(1, activation='sigmoid')
])# 编译模型
# 指定优化器为 Adam,损失函数为二分类交叉熵,评估指标为准确率
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 准备绘图
fig, ax = plt.subplots()
cmap_light = ListedColormap(['#FFAAAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#0000FF'])# 动态绘制函数
def plot_decision_boundary(epoch, logs):ax.clear()x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),np.arange(y_min, y_max, 0.1))grid = np.c_[xx.ravel(), yy.ravel()]probs = model.predict(grid).reshape(xx.shape)ax.contourf(xx, yy, probs, alpha=0.8, cmap=cmap_light)ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train[:, 0], edgecolor='k', cmap=cmap_bold)ax.set_title(f'Epoch {epoch+1}')plt.draw()plt.pause(0.01)# 自定义回调函数
class PlotCallback(tf.keras.callbacks.Callback):def on_epoch_end(self, epoch, logs=None):plot_decision_boundary(epoch, logs)# 训练模型并动态显示
plot_callback = PlotCallback()
model.fit(X_train, y_train, epochs=50, batch_size=16, callbacks=[plot_callback])# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f"Test Loss: {loss}")
print(f"Test Accuracy: {accuracy}")plt.show()
相关文章:
matplotlib 动态显示训练过程中的数据和模型的决策边界
文章目录 Github官网文档简介动态显示训练过程中的数据和模型的决策边界安装源码 Github https://github.com/matplotlib/matplotlib 官网 https://matplotlib.org/stable/ 文档 https://matplotlib.org/stable/api/index.html 简介 matplotlib 是 Python 中最常用的绘图…...
【学术小白成长之路】02三方演化博弈(基于复制动态方程)期望与复制动态方程
从本专栏开始,笔者正式研究演化博弈分析,其中涉及到双方演化博弈分析,三方演化博弈分析,复杂网络博弈分析等等。 先阅读了大量相关的博弈分析的文献,总结了现有的研究常用的研究流程,针对每个流程进行拆解。…...
短剧看剧系统投流版系统搭建,前端uni-app
目录 前言: 一、短剧看剧系统常规款短剧系统和投流版的区别? 二、后端体系 1.管理端: 2.代理投流端 三、功能区别 总结: 前言: 23年上半年共上新微短剧481部,相较于2022年全年上新的454部࿰…...
最新的ffmepg.js前端VUE3实现视频、音频裁剪上传功能
package.json "dependencies": {"ffmpeg/ffmpeg": "^0.12.10","ffmpeg/util": "^0.12.1" }vue3组件代码 根据需要更改 <script setup lang"ts"> import { FFmpeg } from ffmpeg/ffmpeg; import { fetchF…...
“Apache Kylin 实战指南:从安装到高级优化的全面教程
Apache Kylin是一个开源的分布式分析引擎,它提供了在Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力,支持超大规模数据的亚秒级查询。以下是Kylin的入门教程,帮助您快速上手并使用这个强大的工具。 1. 安装Kylin Apache Kylin的安装是一个关键步骤,它要求您具备一…...
【iOS】内存泄漏检查及原因分析
目录 为什么要检测内存泄漏?什么是内存泄漏?内存泄漏排查方法1. 使用Zombie Objects2. 静态分析3. 动态分析方法定位修改Leaks界面分析Call Tree的四个选项: 内存泄漏原因分析1. Leaked Memory:应用程序未引用的、不能再次使用或释…...
“深入探讨Java中的对象拷贝:浅拷贝与深拷贝的差异与应用“
前言:在Java编程中,深拷贝(Deep Copy)与浅拷贝(Shallow Copy)是两个非常重要的概念。它们涉及到对象在内存中的复制方式,对于理解对象的引用、内存管理以及数据安全都至关重要。 ✨✨✨这里是秋…...
Docker 进入指定容器内部(以Mysql为例)
文章目录 一、启动容器二、查看容器是否启动三、进入容器内部 一、启动容器 这个就不多说了 直接docker run… 二、查看容器是否启动 查看正在运行的容器 docker ps查看所有的容器 docker ps -a结果如下图所示: 三、进入容器内部 通过CONTAINER ID进入到容器…...
计算机网络-数制转换与子网划分
目录 一、了解数制 1、计算机的数制 2、二进制 3、八进制 4、十进制 5、十六进制 二、数制转换 1、二进制转十进制 2、八进制转十进制 3、十六进制转十进制 4、十进制转二进制 5、十进制转八进制 6、十进制转十六进制 三、子网划分 1、IP地址定义 2、IP的两种协…...
【ssh命令】ssh登录远程服务器
命令格式:ssh 用户名主机IP # 使用非默认端口: -p 端口号 ssh changxianrui192.168.100.100 -p 1022 # 使用默认端口 22 ssh changxianrui192.168.100.100 然后输入密码,就可以登录进去了。...
【区块链】truffle测试
配置区块链网络 启动Ganache软件 使用VScode打开项目的wordspace 配置对外访问的RPC接口为7545,配置项目的truffle-config.js实现与新建Workspace的连接。 创建项目 创建一个新的目录 mkdir MetaCoin cd MetaCoin下载metacoin盒子 truffle unbox metacoincontra…...
【AIGC调研系列】chatTTS与GPT-SoVITS的对比优劣势
ChatTTS和GPT-SoVITS都是在文本转语音(TTS)领域的重要开源项目,但它们各自有不同的优势和劣势。 ChatTTS 优点: 多语言支持:ChatTTS支持中英文,并且能够生成高质量、自然流畅的对话语音[4][10][13]。细粒…...
LLVM Cpu0 新后端10
想好好熟悉一下llvm开发一个新后端都要干什么,于是参考了老师的系列文章: LLVM 后端实践笔记 代码在这里(还没来得及准备,先用网盘暂存一下): 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…...
k8s面试题大全,保姆级的攻略哦(二)
目录 三十六、pod的定义中有个command和args参数,这两个参数不会和docker镜像的entrypointc冲突吗? 三十七、标签及标签选择器是什么,如何使用? 三十八、service是如何与pod关联的? 三十九、service的域名解析格式…...
Mysql:通过一张表里的父子级,递归查询并且分组分级
递归函数WITH RECURSIVE语法 WITH RECURSIVE cte_name (column_list) AS (SELECT initial_query_resultUNION [ALL]SELECT recursive_queryFROM cte_nameWHERE condition ) SELECT * FROM cte_name; WITH RECURSIVE 关键字:表示要使用递归查询的方式处理数据。 c…...
数据结构之排序算法
目录 1. 插入排序 1.1.1 直接插入排序代码实现 1.1.2 直接插入排序的特性总结 1.2.1 希尔排序的实现 1.2.2 希尔排序的特性总结 2. 选择排序 2.1.1 选择排序 2.1.2 选择排序特性 2.2.1 堆排序 2.2.2 堆排序特性 3. 交换排序 3.1.1 冒泡排序 3.1.2 冒泡排序的特性 …...
移动安全赋能化工能源行业智慧转型
随着我国能源化工企业的不断发展,化工厂中经常存在火灾爆炸的危险,特别是生产场所,约有80%以上生产场所区域存在爆炸性物质。而目前我国化工危险场所移动通信设备的普及率高,但是对移动通信设备的安全防护却有所忽视,包…...
今天是放假带娃的一天
端午节放假第一天 早上5点半宝宝就咔咔乱叫了,几乎每天都这个点醒,准时的很,估计他是个勤奋的娃吧,要早起锻炼婴语,哈哈 醒来后做饭、洗锅、洗宝宝的衣服、给他吃D3,喂200ml奶粉、给他洗澡、哄睡࿰…...
linux Ubuntu安装samba服务器与SSH远程登录
目录 1,下载安装包 2,添加服务器 3,修改服务器配置 3.1 备份配置文件 3.2 修改配置 4,开启samba服务器 5,开关电脑与服务器设置 6, SSH远程登录 1,下载samba服务器安装包 sudo apt in…...
纳什均衡:博弈论中的运作方式、示例以及囚徒困境
文章目录 一、说明二、什么是纳什均衡?2.1 基本概念2.2 关键要点 三、理解纳什均衡四、纳什均衡与主导策略五、纳什均衡的例子六、囚徒困境七、如何原理和应用7.1 博弈论中的纳什均衡是什么?7.2 如何找到纳什均衡?7.3 为什么纳什均衡很重要&a…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
shell脚本质数判断
shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数)shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数) 思路: 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...
【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法
使用 ROS1-Noetic 和 mavros v1.20.1, 携带经纬度海拔的话题主要有三个: /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码,来分析他们的发布过程。发现前两个话题都对应了同一…...
以太网PHY布局布线指南
1. 简介 对于以太网布局布线遵循以下准则很重要,因为这将有助于减少信号发射,最大程度地减少噪声,确保器件作用,最大程度地减少泄漏并提高信号质量。 2. PHY设计准则 2.1 DRC错误检查 首先检查DRC规则是否设置正确,然…...
前端打包工具简单介绍
前端打包工具简单介绍 一、Webpack 架构与插件机制 1. Webpack 架构核心组成 Entry(入口) 指定应用的起点文件,比如 src/index.js。 Module(模块) Webpack 把项目当作模块图,模块可以是 JS、CSS、图片等…...
