当前位置: 首页 > news >正文

Redis的删除策略与内存淘汰

文章目录

    • 删除策略
      • 设置过期时间的常用命令
      • 过期删除策略
    • 内存淘汰
      • 相关设置
      • LRU算法
      • LFU
    • 总结

在redis使用过程中,常常遇到以下问题:

  1. 如何设置Redis键的过期时间?
  2. 设置完一个键的过期时间后,到了这个时间,这个键还能获取到么?假如获取不到那这个键还占据着内存吗?
  3. 如何设置Redis的内存大小?当内存满了之后,Redis有哪些内存淘汰策略?我们又该如何选择?

小面就具体聊一聊redis的删除策略和内存淘汰机制

删除策略

设置过期时间的常用命令

Redis提供了四个命令来设置过期时间(生存时间)。

  • EXPIRE :表示将键 key 的生存时间设置为 ttl 秒。
  • PEXPIRE :表示将键 key 的生存时间设置为 ttl 毫秒。
  • EXPIREAT :表示将键 key 的生存时间设置为 timestamp 所指定的秒数时间戳。
  • PEXPIREAT :表示将键 key 的生存时间设置为 timestamp 所指定的毫秒数时间戳。

在Redis内部实现中,前面三个设置过期时间的命令最后都会转换成最后一个PEXPIREAT 命令来完成。
另外:

  • PERSIST :表示将key的过期时间移除。
  • TTL :以秒的单位返回键 key 的剩余生存时间。
  • PTTL :以毫秒的单位返回键 key 的剩余生存时间。

过期删除策略

在Redis内部,每当我们设置一个键的过期时间时,Redis就会将该键带上过期时间存放到一个过期字典中。当我们查询一个键时,Redis便首先检查该键是否存在过期字典中,如果存在,那就获取其过期时间。然后将过期时间和当前系统时间进行比对,比系统时间大,那就没有过期;反之判定该键过期

通常删除某个key,我们有如下三种方式进行处理。

  1. 定时删除:在设置某个key 的过期时间同时,我们创建一个定时器,让定时器在该过期时间到来时,立即执行对其进行删除的操作。
  2. 惰性删除:设置该key 过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key
  3. 定期删除:每隔一段时间,我们就对一些key进行检查,删除里面过期的key。

Redis的过期删除策略就是:惰性删除和定期删除两种策略配合使用

惰性删除:Redis的惰性删除策略由 db.c/expireIfNeeded 函数实现,所有键读写命令执行之前都会调用expireIfNeeded 函数对其进行检查,如果过期,则删除该键,然后执行键不存在的操作;未过期则不作操作,继续执行原有的命令。

定期删除:由redis.c/activeExpireCycle 函数实现,函数以一定的频率运行,每次运行时,都从一定数量的数据库中取出一定数量的随机键进行检查,并删除其中的过期键。

注意:并不是一次运行就检查所有的库,所有的键,而是随机检查一定数量的键。定期删除函数的运行频率,在Redis2.6版本中,规定每秒运行10次,大概100ms运行一次。在Redis2.8版本后,可以通过修改配置文件redis.conf 的 hz 选项来调整这个次数。

在这里插入图片描述

内存淘汰

Redis 缓存使用内存来保存数据,避免业务应用从后端数据库中读取数据,可以提升应用的响应速度。

为了保证较高的性价比,缓存的空间容量必然要小于后端数据库的数据总量。不过,内存大小毕竟有限,随着要缓存的数据量越来越大,有限的缓存空间不可避免地会被写满。此时,该怎么办呢?
解决这个问题就涉及到缓存系统的一个重要机制,即缓存数据的淘汰机制。简单来说,数据淘汰机制包括两步:第一,根据一定的策略,筛选出对应用访问来说“不重要”的数据;第二,将这些数据从缓存中删除,为新来的数据腾出空间。

相关设置

设置Redis最大内存

在配置文件redis.conf 中,可以通过参数 maxmemory 来设定最大内存:

在这里插入图片描述
不设定该参数默认是无限制的,但是通常会设定其为物理内存的四分之三

设置淘汰方式

当现有内存大于 maxmemory 时,便会触发redis主动淘汰内存方式,通过设置 maxmemory-policy 有如下几种淘汰方式:

  • volatile-lru :设置了过期时间的key使用LRU算法淘汰;
  • allkeys-lru :所有key使用LRU算法淘汰;
  • volatile-lfu :设置了过期时间的key使用LFU算法淘汰;
  • allkeys-lfu :所有key使用LFU算法淘汰;
  • volatile-random :设置了过期时间的key使用随机淘汰;
  • allkeys-random :所有key使用随机淘汰;
  • volatile-ttl :设置了过期时间的key根据过期时间淘汰,越早过期越早淘汰;
  • noeviction :默认策略,当内存达到设置的最大值时,所有申请内存的操作都会报错(如set,lpush等),只读操作如get命令可以正常执行;

在缓存的内存淘汰策略中有FIFO、LRU、LFU三种常用算法,其中LRU和LFU是Redis在使用的。

LRU算法

LRU 算法的全称是 Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。

LRU 算法的全称是 Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。

在这里插入图片描述
现在有数据 6、3、9、20、5。如果数据 20 和 3 被先后访问,它们都会从现有的链表位置移到 MRU 端,而链表中在它们之前的数据则相应地往后移一位。因为,LRU 算法选择删除数据时,都是从 LRU 端开始,所以把刚刚被访问的数据移到 MRU 端,就可以让它们尽可能地留在缓存中。
如果有一个新数据 15 要被写入缓存,但此时已经没有缓存空间了,也就是链表没有空余位置了,那么,LRU 算法做两件事:
1、数据15是刚被访问的,所以他会被放到MRU端
2、算法把LRU端的数据5从缓冲中删除

LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。所以,在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。

具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构RedisObject 中的 lru 字段记录)。然后,Redis 在决定淘汰的数据时,第一次会随机选出N 个数据,把它们作为一个候选集合。接下来,Redis 会比较这 N 个数据的 lru 字段,把lru 字段值最小的数据从缓存中淘汰出去。

Redis 提供了一个配置参数 maxmemory-samples,这个参数就是 Redis 选出的数据个数N。例如,我们执行如下命令,可以让 Redis 选出 100 个数据作为候选数据集:

CONFIG SET maxmemory-samples 100

当需要再次淘汰数据时,Redis 需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是:能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的 lru 值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了 maxmemory-samples,Redis 就把候选数据集中 lru 字段值最小的数据淘汰出去。这样一来,Redis 缓存不用为所有的数据维护一个大链表,也不用在每次数据访问时都移动链表项,提升了缓存的性能。

但在LRU算法下,如果一个热点数据最近很少访问,而非热点数据近期访问了,就会误把热点数据淘汰而留下了非热点数据,因此在Redis4.x中新增了LFU算法。

LFU

LFU(Least Frequently Used)表示最不经常使用,它是根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

LFU 缓存策略是在 LRU 策略基础上,为每个数据增加了一个计数器,来统计这个数据的访问次数。当使用 LFU 策略筛选淘汰数据时,首先会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出缓存。如果两个数据的访问次数相同,LFU 策略再比较这两个数的访问时效性,把距离上一次访问时间更久的数据淘汰出缓存。

和那些被频繁访问的数据相比,扫描式单次查询的数据因为不会被再次访问,所以它们的访问次数不会再增加。因此,LFU 策略会优先把这些访问次数低的数据淘汰出缓存。

那么,LFU 策略具体又是如何实现的呢?

上面可以直到,redis 在实现 LRU 策略时使用了两个近似方法:

  • Redis 是用 RedisObject 结构来保存数据的,RedisObject 结构中设置了一个 lru 字段,用来记录数据的访问时间戳;
  • Redis 并没有为所有的数据维护一个全局的链表,而是通过随机采样方式,选取一定数量(例如 10 个)的数据放入候选集合,后续在候选集合中根据 lru 字段值的大小进行筛选。

在此基础上,Redis在实现LFU策略的时候,只是把原来24bit大小的lru字段,又进一步拆分成了两部分:

  1. ldt值:lru字段的前16bit,表示数据的访问时间戳
  2. counter值:lru字段的后8bit,表示数据的访问次数

总结以下:当LFU帅选数据时,Redis会在候选集合中,根据数据lru字段后的8bit选择访问次数最少的数据进行淘汰,当访问数据相同时,在跟进lru字段的前16bit值大小,选择访问时间最久远的数据进行淘汰。

总结

Redis过期删除策略是采用惰性删除和定期删除这两种方式组合进行的,惰性删除能够保证过期的数据我们在获取时一定获取不到,而定期删除设置合适的频率,则可以保证无效的数据及时得到释放,而不会一直占用内存数据。

但是我们说Redis是部署在物理机上的,内存不可能无限扩充的,当内存达到我们设定的界限后,便自动触发Redis内存淘汰策略,而具体的策略方式要根据实际业务情况进行选取。

相关文章:

Redis的删除策略与内存淘汰

文章目录 删除策略设置过期时间的常用命令过期删除策略 内存淘汰相关设置LRU算法LFU 总结 在redis使用过程中,常常遇到以下问题: 如何设置Redis键的过期时间?设置完一个键的过期时间后,到了这个时间,这个键还能获取到么…...

《一心体系至善算法》“人文+AI”成果

《一心体系至善算法》“人文AI”成果 人工智能(AI)和通用人工智能(AGI)的伦理与安全问题: 在《中法联合声明》中,着重强调了AI向善问题。在探讨人工智能(AI)和通用人工智能(AGI&…...

C#面:阐述对DDD的理解

C#是一种面向对象的编程语言,而领域驱动设计(Domain-Driven Design,简称DDD)是一种软件开发方法论,它强调将业务领域的知识和逻辑直接融入到软件设计和开发中。 在C#中实施DDD的关键是将业务领域划分为不同的领域模型…...

音视频开发19 FFmpeg 视频解码- 将 h264 转化成 yuv

视频解码过程 视频解码过程如下图所示: ⼀般解出来的是420p FFmpeg流程 这里的流程是和音频的解码过程一样的,不同的只有在存储YUV数据的时候的形式 存储YUV 数据 如果知道YUV 数据的格式 前提:这里我们打开的h264文件,默认是YU…...

Mysql 常用命令 详细大全【分步详解】

1、启动和停止MySQL服务 // 暂停服务 默认 80 net stop mysql80// 启动服务 net start mysql80// 任意地方启动 mysql 客户端的连接 mysql -u root -p 2、输入密码 3、数据库 4、DDL(Data Definition Language )数据 定义语言, 用来定义数据库对象(数…...

基于百度接口的实时流式语音识别系统

目录 基于百度接口的实时流式语音识别系统 1. 简介 2. 需求分析 3. 系统架构 4. 模块设计 4.1 音频输入模块 4.2 WebSocket通信模块 4.3 音频处理模块 4.4 结果处理模块 5. 接口设计 5.1 WebSocket接口 5.2 音频输入接口 6. 流程图 程序说明文档 1. 安装依赖 2.…...

AIGC作答《2024年高考作文|新课标I卷》能拿多少分?

AIGC作答《2024年高考作文|新课标I卷》能拿多少分? 一、前言二、题目三、作答 一、前言 如火如荼的2024年高考圆满落幕,在如此Happy的时刻,AIGC技术正以其前所未有的热度席卷全球。它不仅改变了我们获取信息的方式,也…...

WHAT - 发布订阅

目录 一、常见实现方案1.1 使用事件发射器(Event Emitter)1.2 自定义事件系统(EventBus)1.3 使用库如 PubSubJS1.4 使用框架内置的状态管理工具Vue.jsReact (使用 Context API 或 Redux) 二、先后关系2.1 缓存事件数据2.2 使用 Re…...

React@16.x(23)useEffect

目录 1,介绍作用介绍 2,注意点2.1,参数1,副作用函数2.1.1,运行时间点2.1.2,返回值2.1.3,闭包的影响2.1.4,严禁出现在代码块中(判断,循环)2.1.5&am…...

算法竞赛一句话解题经典问题分析 ©ntsc 2024

原名:算法竞赛一句话解题&经典问题分析 ©ntsc 2024 处理进度 绿:P1381【~P(今日进度)】蓝:P1099 致CSDN网友: 本文章不定期更新!文章链接: 经典问题分析 基础知识与编程…...

【TensorFlow深度学习】强化学习中的贝尔曼方程及其应用

强化学习中的贝尔曼方程及其应用 强化学习中的贝尔曼方程及其应用:理解与实战演练贝尔曼方程简介应用场景代码实例:使用Python实现贝尔曼方程求解状态价值结语 强化学习中的贝尔曼方程及其应用:理解与实战演练 在强化学习这一复杂而迷人的领…...

牛客 NC129 阶乘末尾0的数量【简单 基础数学 Java/Go/PHP/C++】

题目 题目链接: https://www.nowcoder.com/practice/aa03dff18376454c9d2e359163bf44b8 https://www.lintcode.com/problem/2 思路 Java代码 import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改&#xff…...

【Spring Boot】异常处理

异常处理 1.认识异常处理1.1 异常处理的必要性1.2 异常的分类1.3 如何处理异常1.3.1 捕获异常1.3.2 抛出异常1.3.4 自定义异常 1.4 Spring Boot 默认的异常处理 2.使用控制器通知3.自定义错误处理控制器3.1 自定义一个错误的处理控制器3.2 自定义业务异常类3.2.1 自定义异常类3…...

Laravel学习-自定义辅助函数

因为laravel框架的辅助函数helpers不会进入版本库,被版本库忽略的,只有自己创建一个helpers辅助函数。 可以在任意文件下创建helpers.php文件,建议在app目录下, 然后在composer.json文件中,autoload 中间&#xff0c…...

LLVM Cpu0 新后端6

想好好熟悉一下llvm开发一个新后端都要干什么,于是参考了老师的系列文章: LLVM 后端实践笔记 代码在这里(还没来得及准备,先用网盘暂存一下): 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…...

GAT1399协议分析(9)--图像上传

一、官方定义 二、wirechark实例 有前面查询的基础,这个接口相对简单很多。 请求: 文本化: POST /VIID/Images HTTP/1.1 Host: 10.0.201.56:31400 User-Agent: python-requests/2.32.3 Accept-Encoding: gzip, deflate Accept: */* Connection: keep-alive content-type:…...

Spring ApplicationContext的getBean方法

Spring ApplicationContext的getBean方法 在Spring框架的ApplicationContext中&#xff0c;getBean(Class<T> requiredType)方法可以接受一个类类型参数&#xff0c;这个参数可以是接口类也可以是实现类。 使用接口类&#xff1a; 如果requiredType是一个接口&#xff0c…...

自然语言处理(NLP)—— 自动摘要

自动摘要是一种将长文本信息浓缩为短文本的技术&#xff0c;旨在保留原文的主要信息和意义。 1 自动摘要的第一种方法 它的第一种方法是基于理解的&#xff0c;受认知科学和人工智能的启发。 在这个方法中&#xff0c;我们首先建立文本的语义表示&#xff0c;这可以理解为文本…...

Spring RestClient报错:400 Bad Request : [no body]

我项目采用微服务架构&#xff0c;所以各服务之间通过Spring RestClient远程调用&#xff0c;本来一直工作得好好的&#xff0c;昨天突然发现远程调用一直报错&#xff0c;错误详情如下&#xff1a; org.springframework.web.client.HttpClientErrorException$BadRequest: 400…...

【数据结构】 -- 堆 (堆排序)(TOP-K问题)

引入 要学习堆&#xff0c;首先要先简单的了解一下二叉树&#xff0c;二叉树是一种常见的树形数据结构&#xff0c;每个节点最多有两个子节点&#xff0c;通常称为左子节点和右子节点。它具有以下特点&#xff1a; 根节点&#xff08;Root&#xff09;&#xff1a;树的顶部节…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...