群体优化算法----树蛙优化算法介绍以及应用于资源分配示例
介绍
树蛙优化算法(Tree Frog Optimization Algorithm, TFO)是一种基于群体智能的优化算法,模拟了树蛙在自然环境中的跳跃和觅食行为。该算法通过模拟树蛙在树枝间的跳跃来寻找最优解,属于近年来发展起来的自然启发式算法的一种
算法背景与灵感
树蛙优化算法的灵感来源于树蛙的生态行为。树蛙在觅食过程中会在树枝间跳跃,以寻找食物。在这个过程中,树蛙会根据食物的味道(即目标函数的值)来决定跳跃的方向和距离。通过不断跳跃,树蛙能够找到食物最多的位置,这类似于优化问题中的全局最优解
算法结构与步骤
树蛙优化算法主要包括以下几个步骤:
1.初始化种群:随机生成树蛙种群,每只树蛙的位置代表一个可能的解。
2.适应度评估:计算每只树蛙的适应度值,即目标函数的值。
3.排序与分组:根据适应度值对树蛙进行排序,并将其分成若干个子群。
4.局部搜索:在每个子群内,树蛙进行局部搜索,尝试改进自己的位置。具体做法是:选取子群内适应度最好的树蛙作为局部最优树蛙;
其他树蛙根据局部最优树蛙的位置进行跳跃,更新自己的位置。
5.全局搜索:在整个种群范围内,选取适应度最好的树蛙作为全局最优树蛙,其他树蛙根据全局最优树蛙的位置进行跳跃。
6.更新位置:根据跳跃的方向和距离更新树蛙的位置。
7.迭代:重复步骤2到6,直到满足停止条件(如达到最大迭代次数或找到满意的解)
算法特点
多样性与全局搜索能力:通过分组和局部搜索,树蛙优化算法能够保持种群的多样性,避免陷入局部最优。同时,全局搜索步骤确保了算法具有强大的全局搜索能力。
灵活性与适应性:树蛙优化算法可以适应各种复杂的优化问题,包括连续和离散优化问题。
简单性与易实现性:该算法结构简单,易于实现,并且计算复杂度较低。
应用于领域
树蛙优化算法已经在多个领域得到了应用,包括但不限于:
工程优化:如结构设计、路径规划、资源分配等问题。
机器学习:如神经网络训练、特征选择等问题。
图像处理:如图像分割、图像匹配等问题
本文实例
我们将演示树蛙在资源分配上的应用,假设我们有一个简单的资源分配问题,需要在若干个项目之间分配一定的资源,使得总收益最大化。我们将使用树蛙优化算法来解决这个问题
步骤:
定义问题: 假设有n个项目和m个资源,每个项目的资源需求和收益是已知的。
初始化种群: 随机生成树蛙种群,每只树蛙的位置表示一种资源分配方案。
适应度评估: 计算每只树蛙的适应度值,即资源分配方案的总收益。
排序与分组: 根据适应度值对树蛙进行排序,并将其分成若干个子群。
局部搜索与全局搜索: 通过局部和全局搜索,更新树蛙的位置,以找到最优的资源分配方案。
更新位置与迭代: 重复上述过程直到达到停止条件
代码
function treeFrogOptimization()% 参数设置numFrogs = 30; % 树蛙数量numGroups = 5; % 分组数量maxIterations = 100; % 最大迭代次数numProjects = 10; % 项目数量numResources = 3; % 资源种类数量% 资源需求和收益矩阵resourceDemand = randi([1, 10], numProjects, numResources);projectProfit = randi([10, 100], numProjects, 1);totalResources = [50, 50, 50]; % 每种资源的总量% 初始化种群frogs = randi([0, 1], numFrogs, numProjects, numResources);fitness = zeros(numFrogs, 1);% 计算初始适应度for i = 1:numFrogsfitness(i) = evaluateFitness(squeeze(frogs(i, :, :)), resourceDemand, projectProfit, totalResources);end% 主循环for iter = 1:maxIterations% 排序并分组[fitness, sortedIdx] = sort(fitness, 'descend');frogs = frogs(sortedIdx, :, :);groups = cell(numGroups, 1);for i = 1:numGroupsgroups{i} = frogs(i:numGroups:end, :, :);end% 局部搜索for i = 1:numGroupslocalBestFrog = groups{i}(1, :, :);for j = 2:size(groups{i}, 1)newFrog = localSearch(squeeze(groups{i}(j, :, :)), squeeze(localBestFrog));newFitness = evaluateFitness(newFrog, resourceDemand, projectProfit, totalResources);if newFitness > fitness((i-1) * numGroups + j)frogs((i-1) * numGroups + j, :, :) = newFrog;fitness((i-1) * numGroups + j) = newFitness;endendend% 全局搜索globalBestFrog = frogs(1, :, :);for i = 2:numFrogsnewFrog = globalSearch(squeeze(frogs(i, :, :)), squeeze(globalBestFrog));newFitness = evaluateFitness(newFrog, resourceDemand, projectProfit, totalResources);if newFitness > fitness(i)frogs(i, :, :) = newFrog;fitness(i) = newFitness;endendend% 输出最优解disp('最优资源分配方案:');disp(squeeze(frogs(1, :, :)));disp('最大收益:');disp(fitness(1));
end% 评估适应度函数
function fitness = evaluateFitness(frog, resourceDemand, projectProfit, totalResources)totalProfit = sum(projectProfit .* (sum(frog, 2) > 0));resourceUsed = sum(frog, 1);if any(resourceUsed > totalResources)fitness = 0; % 资源超出限制,适应度设为0elsefitness = totalProfit;end
end% 改进局部搜索函数
function newFrog = localSearch(frog, localBestFrog)mutationProb = 0.1;newFrog = frog;for i = 1:size(frog, 1)for j = 1:size(frog, 2)if rand < mutationProbnewFrog(i, j) = ~frog(i, j); % 翻转当前位endendendif rand < 0.5 % 50%的概率交换局部最优解和当前解的部分资源分配swapIndex = randi(size(frog, 2), 1);newFrog(:, swapIndex) = localBestFrog(:, swapIndex);end
end% 改进全局搜索函数
function newFrog = globalSearch(frog, globalBestFrog)mutationProb = 0.2;newFrog = frog;for i = 1:size(frog, 1)for j = 1:size(frog, 2)if rand < mutationProbnewFrog(i, j) = ~frog(i, j); % 翻转当前位endendendif rand < 0.5 % 50%的概率交换全局最优解和当前解的部分资源分配swapIndex = randi(size(frog, 2), 1);newFrog(:, swapIndex) = globalBestFrog(:, swapIndex);end
end
说明
参数设置与初始化:定义树蛙数量、分组数量、最大迭代次数以及项目和资源的数量。随机生成资源需求矩阵和项目收益向量。
初始化种群:随机生成树蛙种群,每只树蛙的位置表示一种资源分配方案(0或1表示是否分配资源)。
适应度评估:计算每只树蛙的适应度,即资源分配方案的总收益。
排序与分组:根据适应度对树蛙进行排序,并将其分成若干个子群。
局部搜索与全局搜索:分别在子群内和全局范围内进行搜索,更新树蛙的位置。
输出最优解:经过迭代,输出最优的资源分配方案和最大收益
注意事项
资源约束:在实际应用中,可能需要考虑资源的总量约束,这可以在适应度评估函数中进行调整。
参数调整:算法的性能可能受参数设置的影响,如树蛙数量、分组数量、最大迭代次数和变异概率等,可以根据具体问题进行调整。
改进算法:可以引入更多高级的局部搜索策略和全局搜索策略,提高算法的优化能力和收敛速度。
效果
相关文章:

群体优化算法----树蛙优化算法介绍以及应用于资源分配示例
介绍 树蛙优化算法(Tree Frog Optimization Algorithm, TFO)是一种基于群体智能的优化算法,模拟了树蛙在自然环境中的跳跃和觅食行为。该算法通过模拟树蛙在树枝间的跳跃来寻找最优解,属于近年来发展起来的自然启发式算法的一种 …...
常见汇编指令
下面是一些包含汇编指令 MOV、PUSH、POP、LEA、LDS、ADD、ADC、INC、SUB、SBB、DEC、CMP、MUL、DIV、AND、OR、XOR、NOT、TEST、SHL、SAL、SHR、SAR、ROL、ROR、RCL、RCR、LODS、MOVS 的例题。这些例题展示了每条指令的用法及其作用。 1. MOV 指令 MOV AX, BX ; 将寄存器 B…...

Mysql学习(七)——约束
文章目录 四、约束4.1 概述4.2 约束演示4.3 外键约束 总结 四、约束 4.1 概述 概念:约束是作用于表中字段上的规则,用于限制存储在表中的数据。目的:保证数据库中数据的正确、有效性和完整性。分类: 4.2 约束演示 根据需求&…...

Redis实战篇02
1.分布式锁Redisson 简单介绍: 使用setnx可能会出现的极端问题: Redisson的简介: 简单的使用: 业务代码的改造: private void handleVoucherOrder(VoucherOrder voucherOrder) {Long userId voucherOrder.getUserI…...

怎么用PHP语言实现远程控制两路照明开关
怎么用PHP语言实现远程控制两路开关呢? 本文描述了使用PHP语言调用HTTP接口,实现控制两路开关,两路开关可控制两路照明、排风扇等电器。 可选用产品:可根据实际场景需求,选择对应的规格 序号设备名称厂商1智能WiFi墙…...
Docker面试整理-什么是多阶段构建?它的好处是什么?
多阶段构建是 Docker 在 Dockerfile 中引入的一个功能,允许你在单个 Dockerfile 中使用多个构建阶段,但最终只生成一个轻量级的镜像。这是通过在一个 Dockerfile 中定义多个 FROM 指令来实现的,每个 FROM 指令都可以使用不同的基础镜像,并开始一个新的构建阶段。 多阶段构建…...

ENSP校园网设计实验
前言 哈喽,我是ICT大龙。本次更新了使用ENSP仿真软件设计校园网实验。时间比较着急,可能会有错误,欢迎大家指出。 获取本次工程文件方式在文章结束部分。 拓扑设计 拓扑介绍---A校区 如图,XYZ大学校园网设计分为3部分࿰…...

【Spring框架全系列】SpringBoot_3种配置文件_yml语法_多环境开发配置_配置文件分类(详细)
文章目录 1.三种配置文件2. yaml语法2.1 yaml语法规则2.2 yaml数组数据2.3 yaml数据读取 3. 多环境开发配置3.1 多环境启动配置3.2 多环境启动命令格式3.3 多环境开发控制 4. 配置文件分类 1.三种配置文件 问题导入 框架常见的配置文件有哪几种形式? 比如…...
华为坤灵路由器初始化的几个坑,含NAT配置
1、aaa密码复杂度修改: #使能设备对密码进行四选三复杂度检查功能。 <HUAWEI>system-view [HUAWEI]aaa [HUAWEI-aaa]local-aaa-user password policy administrator [HUAWEI-aaa-lupp-admin]password complexity three-of-kinds 2、本地用户名长度必须大…...
【RAG入门教程04】Langchian的文档切分
在 Langchain 中,文档转换器是一种在将文档提供给其他 Langchain 组件之前对其进行处理的工具。通过清理、处理和转换文档,这些工具可确保 LLM 和其他 Langchain 组件以优化其性能的格式接收数据。 上一章我们了解了文档加载器,加载完文档之…...

请求 响应
在web的前后端分离开发过程中,前端发送请求给后端,后端接收请求,响应数据给前端 请求 前端发送数据进行请求 简单参数 原始方式 在原始的web程序中,获取请求参数,需要通过HttpServletRequest 对象手动获取。 代码…...
技术周总结2024.06.03~06.09(K8S HikariCP数据库连接池)
文章目录 一、06.05 周三1.1) 问题01: 容器领域,Docker与 K8S的区别和联系Docker主要功能和特点:使用场景: Kubernetes (K8S)主要功能和特点:使用场景: 联系和区别联系:区别: 结合使用总结 二、…...
【JavaScript】了解 Sass:现代 CSS 的强大预处理器
我已经从你的 全世界路过 像一颗流星 划过命运 的天空 很多话忍住了 不能说出口 珍藏在 我的心中 只留下一些回忆 🎵 牛奶咖啡《从你的全世界路过》 在前端开发领域,CSS 是必不可少的样式表语言。然而,随着项目复杂度的…...

下载安装Thonny并烧录MicroPython固件至ESP32
Thonny介绍 一、Thonny的基本特点 面向初学者:Thonny的设计初衷是为了帮助Python初学者更轻松、更快速地入门编程。它提供了直观易懂的用户界面和丰富的功能,降低了编程的门槛。轻量级:作为一款轻量级的IDE,Thonny不会占用过多的…...

YOLOv5改进 | 主干网络 | 将主干网络替换为轻量化的ShuffleNetv2【原理 + 完整代码】
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 目标检测是计算机视觉中一个重要的下游任务。对于边缘盒子的计算平台来说,一个大型模型很难实现实时检测的要求。基于一系列消融…...
LeetCode:字母异位词分组
文章收录于LeetCode专栏 LeetCode地址 字母异位词分组 题目 给定一个字符串数组,将字母异位词组合在一起。字母异位词指字母相同,但排列不同的字符串。所有输入均为小写字母,且不考虑答案输出的顺序。 示例1: 输入: strs [“…...

技术与业务的完美融合:大数据BI如何真正提升业务价值
数据分析有一点经典案例 沃尔玛的啤酒和尿布案例 开始做BI的时候,大家肯定都看过书,那么一定也看过一个经典的案例,就是沃尔玛的啤酒和尿布的案例。这个案例确实很经典,但其实是一个失败的案例。为什么这么说呢?很明显…...

计网复习资料
一、选择题(每题2分,共40分) 1. Internet 网络本质上属于( )网络。 A.电路交换 B.报文交换 C.分组交换 D.虚电路 2.在 OSI 参考模型中,自下而上第一个提供端到端服务的是( )。 A.数据链路层 B.传输…...
华为策略流控
以下脚本仅做参考,具体IP地址和接口请按照现场实际情况写入。 [Huawei]acl 3001 [Huawei-acl-adv-3001]rule permit ip source 192.168.1.10 0.0.0.0 destination 192.168.2.10 0.0.0.0 //匹配需要做测试的源和目标地址 [Huawei-acl-adv-3001]rule permit ip sour…...

刷代码随想录有感(98):动态规划——爬楼梯
题干: 代码: class Solution { public:int climbStairs(int n) {if(n 1)return 1;if(n 2)return 2;vector<int>dp(n 1);dp[0] 0;dp[1] 1;dp[2] 2;for(int i 3; i < n; i){dp[i] dp[i - 1] dp[i - 2];}return dp[n];} }; 其实就是斐波…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...