Leetcode 回溯详解
回溯法
回溯法有“通用解题法”之称,用它可以系统地搜索问题的所有解。回溯法是一个既带有系统性又带有跳跃性的搜索算法。
在包含问题的所有解的解空间树中,按照深度优先搜索(DFS))的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。
若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

解题步骤
- 针对所给问题,定义问题的解空间
- 确定易于搜索的解空间结构
- 以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索
子集树与排列树
下面的两棵解空间树是回溯法解题时常遇到的两类典型的解空间树,子集树与排列树
子集树
当所给问题是从n个元素的集合S中找出S满足某种性质的子集时,相应的解空间树称为子集树。例如从n个物品的0-1背包问题所相应的解空间树是一棵子集树,这类子集树通常有2n{2^n}2n个叶结点,其结点总个数为2n+1−1{2 ^{n+1}- 1}2n+1−1。遍历子集树的算法需O(2n{2^n}2n)计算时间
用回溯法搜索子集树的一般算法可描述为:
/*** output(x) 记录或输出得到的可行解x* constraint(t) 当前结点的约束函数* bount(t) 当前结点的限界函数* @param t t为当前解空间的层数*/
void backtrack(int t){if(t >= n)output(x);elsefor (int i = 0; i <= 1; i++) {x[t] = i;if(constraint(t) && bount(t))backtrack(t+1);}
}
排列树
当所给问题是确定n个元素满足某种性质的排列时,相应的解空间树称为排列树。例如旅行售货员问题的解空间树是一棵排列树,这类排列树通常有n!{n!}n!个叶结点。遍历子集树的算法需O(n!{n!}n!)计算时间
用回溯法搜索排列树的一般算法可描述为:
/*** output(x) 记录或输出得到的可行解x* constraint(t) 当前结点的约束函数* bount(t) 当前结点的限界函数* @param t t为当前解空间的层数*/
void backtrack(int t){if(t >= n)output(x);elsefor (int i = t; i <= n; i++) {swap(x[t], x[i]);if(constraint(t) && bount(t))backtrack(t+1);swap(x[t], x[i]);}
}
Leetcode真题
电话号码的字母组合
解题思路:
经典排列树,按节点遍历
private String[] voc = new String[]{"","*", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
List<String> res = new ArrayList();
public List<String> letterCombinations(String digits) {if (digits == null || digits.length() == 0) {return res;}backtrack(digits, 0, new StringBuffer());return res;
}public void backtrack(String digits, int index, StringBuffer s) {if (index == digits.length()) {res.add(s.toString());return;}int i = digits.charAt(index) - '0';for (char c : voc[i].toCharArray()) {s.append(c);backtrack(digits, index + 1, s);s.deleteCharAt(s.length() - 1);}
}
括号生成
解题思路:
排列树,按节点遍历
- 回溯结束条件:左括号数 = 右括号数 = 总数
- 左括号数<总数, 字符串加入左括号
- 右括号数<总数 且 左括号数>右括号数,字符串加入右括号
List<String> res = new ArrayList<>();
public List<String> generateParenthesis(int n) {backtrack(n, 0, 0, "");return res;
}void backtrack(int n, int l, int r, String str) {if (l == n && r == n) {res.add(str);}if (l < n) {backtrack(n, l + 1, r, str + "(");}if (r < n && l > r) {backtrack(n, l, r + 1, str + ")");}
}
N皇后
解题思路:
子集树,按节点遍历
- 回溯结束条件:所有层数放置完毕
- 每列循环遍历,当满足非冲突条件时(列,主对角线,副对角线不冲突)
- 放置该行的皇后
- 执行下一级回溯
两点位于同一对角线时,行列值相加/相减的值相等
List<List<String>> res = new ArrayList<>();
public List<List<String>> solveNQueens(int n) {if (n <= 0) {return res;}backtrack(0, n, new int[n]);return res;
}/*** output(x) 记录或输出得到的可行解x* constraint(t) 当前结点的约束函数** @param t t为当前解空间的层数* @param n 总层数* @param queens 结果集,下标为行号,值为列号*/
void backtrack(int t, int n, int[] queens) {if (t >= n) {output(res, n, queens);return;} else {for (int j = 0; j < n; j++) {if (constraint(t, j, n, queens)) {queens[t] = j;backtrack(t + 1, n, queens);}}}
}/*** 检查是否存在冲突(列,主对角线,副对角线)* 两点位于同一对角线时,行列值相加/相减的值相等*/
boolean constraint(int t, int j, int n, int[] queens) {for (int i = 0; i < t; i++) {if (queens[i] == j || i - queens[i] == t - j || i + queens[i] == t + j) {return false;}}return true;
}void output(List<List<String>> res, int n, int[] queens) {List<String> list = new ArrayList<>();for (int i = 0; i < n; i++) {char[] chars = new char[n];Arrays.fill(chars, '.');chars[queens[i]] = 'Q';list.add(new String(chars));}res.add(list);
}
参考资料:
- 回溯法的解题步骤与例子解析
- leetcode
- 深度优先搜索
相关文章:
Leetcode 回溯详解
回溯法 回溯法有“通用解题法”之称,用它可以系统地搜索问题的所有解。回溯法是一个既带有系统性又带有跳跃性的搜索算法。 在包含问题的所有解的解空间树中,按照深度优先搜索(DFS))的策略,从根结点出发深度探索解空间树。当探索…...
AI_Papers:第一期
2023.02.06—2023.02.12 文摘词云 Top Papers Subjects: cs.CL 1.Multimodal Chain-of-Thought Reasoning in Language Models 标题:语言模型中的多模式思维链推理 作者:Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, Alex Sm…...
C/C++内存管理
C/C内存管理C/C内存分布C语言中内存管理的方式:malloc/calloc/realloc/freeC内存管理方式内置类型自定义类型operator new 与operator deletenew和delete的实现原理内置类型自定义类型定位new表达式(placement-new)new/delete与malloc/free的区别C/C内存分布 我们先…...
【大数据hive】hive 函数使用详解
一、前言 在任何一种编程语言中,函数可以说是必不可少的,像mysql、oracle中,提供了很多内置函数,或者通过自定义函数的方式进行定制化使用,而hive作为一门数据分析软件,随着版本的不断更新迭代,…...
彻底搞懂分布式系统服务注册与发现原理
目录 引入服务注册与发现组件的原因 单体架构 应用与数据分离...
安卓Camera2用ImageReader获取NV21源码分析
以前如何得到Camera预览流回调 可以通过如下方法,得到一路预览回调流 Camera#setPreviewCallbackWithBuffer(Camera.PreviewCallback),可以通过如下方法,设置回调数据的格式,比如 ImageFormat.NV21 Camera.Parameters#setPreview…...
24. 两两交换链表中的节点
文章目录题目描述迭代法递归法参考文献题目描述 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。 示例 1: 输入&a…...
linux006之帮助命令
linux帮助命令简介: linux的命令是非常多的,光靠人是记不住的,在工作中一般都会去网上查,这是有外网的情况下,如果项目中不允许访问外网,那么linux的帮助命令就可以派上用场了, linux帮助命令是…...
【C++初阶】十三、模板进阶(总)|非类型模板参数|模板的特化|模板分离编译|模板总结(优缺点)
目录 一、非类型模板参数 二、模板的特化 2.1 模板特化概念 2.2 函数模板特化 2.3 类模板特化 2.3.1 全特化 2.3.2 偏特化 三、模板分离编译 四、模板总结(优缺点) 前言:之前模板初阶并没有把 C模板讲完,因为当时没有接触…...
Linux之文本搜索命令
文本搜索命令学习目标能够知道文本搜索使用的命令1. grep命令的使用命令说明grep文本搜索grep命令效果图:2. grep命令选项的使用命令选项说明-i忽略大小写-n显示匹配行号-v显示不包含匹配文本的所有行-i命令选项效果图:-n命令选项效果图:-v命令选项效果图:3. grep命令结合正则表…...
微信小程序Springboot 校园拼车自助服务系统java
系统管理员: 管理员账户管理:在线对管理员的账户信息进行管理,包括对管理员信息的增加修改以及密码的修改等。 站内新闻管理:在后台对站内新闻信息进行发布,并能够对站内新闻信息进行删除修改等。 论坛版块管理&#x…...
【Unity3D 常用插件】Haste插件
一,Haste介绍 Haste插件是一款针对 Unity 3D 的 Everthing软件,可以实现基于名称快速定位对象的功能。Unity 3D 编辑器也自带了搜索功能,但是在 project视图 和 Hierarchy视图 中的对象需要分别查找,不支持模糊匹配。Haste插件就…...
【c++面试问答】全局变量和局部变量的区别
问题 C中的全局变量和局部变量有什么区别? 注:内容全部参考自文末的参考资料 全局变量和局部变量的区别 可以从以下4个角度来区分: 区别全局变量局部变量作用域全局作用域局部作用域内存分配全局变量在静态数据区静态局部变量在静态数据区…...
Java List集合
6 List集合 List系列集合:添加的元素是有序,可重复,有索引 ArrayList: 添加的元素是有序,可重复,有索引LinkedList: 添加的元素是有序,可重复,有索引Vector :是线程安全的ÿ…...
linux服务器挂载硬盘/磁盘
1. 查看机器所挂硬盘个数及分区情况:fdisk -l可以看出来目前/dev/vda 目前有300G可用.内部有两个分区(/dev/vda1,/dev/vda2)。2. 格式化磁盘格式化磁盘命令为【mkfs.磁盘类型格式 目录路径组成】查看磁盘文件格式:df -T格式化磁盘…...
Java 抽象类
文章目录1、抽象方法和抽象类2、抽象类的作用当编写一个类时,常常会为该类定义一些方法,用于描述该类的行为方式,这些方法都有具体的方法体。但在某些情况下,某个基类只是知道其子类应该包含那些方法,但不知道子类是如…...
OpenPPL PPQ量化(5):执行引擎 源码剖析
目录 PPQ Graph Executor(PPQ 执行引擎) PPQ Backend Functions(PPQ 算子库) PPQ Executor(PPQ 执行引擎) Quantize Delegate (量化代理函数) Usage (用法示例) Hook (执行钩子函数) 前面四篇博客其实就讲了下面两行代码: ppq_ir load_onnx_graph(onnx_impor…...
【脚本开发】运维人员必备技能图谱
脚本(Script)语言是一种动态的、解释性的语言,依据一定的格式编写的可执行文件,又称作宏或批处理文件。脚本语言具有小巧便捷、快速开发的特点;常见的脚本语言有Windows批处理脚本bat、Linux脚本语言shell以及python、…...
N字形变换-力扣6-java
一、题目描述将一个给定字符串 s 根据给定的行数 numRows ,以从上往下、从左到右进行 Z 字形排列。比如输入字符串为 "PAYPALISHIRING" 行数为 3 时,排列如下:P A H NA P L S I I GY I R之后,你的输出需要从左往右逐行读…...
概论_第5章_中心极限定理1__定理2(棣莫弗-拉普拉斯中心极限定理)
在概率论中, 把有关论证随机变量和的极限分布为正态分布的一类定理称为中心极限定理称为中心极限定理称为中心极限定理。 本文介绍独立同分布序列的中心极限定理。 一 独立同分布序列的中心极限定理 定理1 设X1,X2,...Xn,...X_1, X_2, ...X_n,...X1,X2,...Xn…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决
问题: pgsql数据库通过备份数据库文件进行还原时,如果表中有自增序列,还原后可能会出现重复的序列,此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”,…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
leetcode_69.x的平方根
题目如下 : 看到题 ,我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历,我们是整数的平方根,所以我们分两…...
项目进度管理软件是什么?项目进度管理软件有哪些核心功能?
无论是建筑施工、软件开发,还是市场营销活动,项目往往涉及多个团队、大量资源和严格的时间表。如果没有一个系统化的工具来跟踪和管理这些元素,项目很容易陷入混乱,导致进度延误、成本超支,甚至失败。 项目进度管理软…...
