当前位置: 首页 > news >正文

SQL159 每个创作者每月的涨粉率及截止当前的总粉丝量

描述

用户-视频互动表tb_user_video_log

iduidvideo_idstart_timeend_timeif_followif_likeif_retweetcomment_id
110120012021-09-01 10:00:002021-09-01 10:00:20011NULL
210520022021-09-10 11:00:002021-09-10 11:00:30101NULL
310120012021-10-01 10:00:002021-10-01 10:00:20111NULL
410220012021-10-01 10:00:002021-10-01 10:00:15001NULL
510320012021-10-01 11:00:502021-10-01 11:01:151101732526
610620022021-10-01 10:59:052021-10-01 11:00:05200NULL

(uid-用户ID, video_id-视频ID, start_time-开始观看时间, end_time-结束观看时间, if_follow-是否关注, if_like-是否点赞, if_retweet-是否转发, comment_id-评论ID)

短视频信息表tb_video_info

idvideo_idauthortagdurationrelease_time
12001901影视302021-01-01 07:00:00
22002901美食602021-01-01 07:00:00
32003902旅游902020-01-01 07:00:00
42004902美女902020-01-01 08:00:00

(video_id-视频ID, author-创作者ID, tag-类别标签, duration-视频时长, release_time-发布时间)

问题:计算2021年里每个创作者每月的涨粉率及截止当月的总粉丝量

  • 涨粉率=(加粉量 - 掉粉量) / 播放量。结果按创作者ID、总粉丝量升序排序。
  • if_follow-是否关注为1表示用户观看视频中关注了视频创作者,为0表示此次互动前后关注状态未发生变化,为2表示本次观看过程中取消了关注。

输出示例

示例数据的输出结果如下

authormonthfans_growth_ratetotal_fans
9012021-090.5001
9012021-100.2502

解释:

示例数据中表tb_user_video_log里只有视频2001和2002的播放记录,都来自创作者901,播放时间在2021年9月和10月;其中9月里加粉量为1,掉粉量为0,播放量为2,因此涨粉率为0.500(保留3位小数);其中10月里加粉量为2,掉份量为1,播放量为4,因此涨粉率为0.250,截止当前总粉丝数为2。

示例1

输入:

DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',uid INT NOT NULL COMMENT '用户ID',video_id INT NOT NULL COMMENT '视频ID',start_time datetime COMMENT '开始观看时间',end_time datetime COMMENT '结束观看时间',if_follow TINYINT COMMENT '是否关注',if_like TINYINT COMMENT '是否点赞',if_retweet TINYINT COMMENT '是否转发',comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;CREATE TABLE tb_video_info (id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',video_id INT UNIQUE NOT NULL COMMENT '视频ID',author INT NOT NULL COMMENT '创作者ID',tag VARCHAR(16) NOT NULL COMMENT '类别标签',duration INT NOT NULL COMMENT '视频时长(秒数)',release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES(101, 2001, '2021-09-01 10:00:00', '2021-09-01 10:00:20', 0, 1, 1, null),(105, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null),(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 1, null),(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null),(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526),(106, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 2, 0, 0, null);INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES(2001, 901, '影视', 30, '2021-01-01 7:00:00'),(2002, 901, '影视', 60, '2021-01-01 7:00:00'),(2003, 902, '旅游', 90, '2020-01-01 7:00:00'),(2004, 902, '美女', 90, '2020-01-01 8:00:00');

输出:

901|2021-09|0.500|1
901|2021-10|0.250|2

解答

下面是解题过程的详细题解,以及对应的SQL代码和注释:

  1. 确定数据源:首先,我们需要知道数据存储在哪些表中,以及表中的列名。根据题目,我们有两个表:tb_user_video_logtb_video_info
  2. 筛选数据:我们需要筛选出2021年的数据。这可以通过比较end_time字段的年份部分来实现。
  3. 计算涨粉率:涨粉率是新增粉丝数与流失粉丝数的差额除以当月的总粉丝数。我们使用COUNT(distinct if(if_follow = 1,uid,null))来计算新增粉丝数,使用COUNT(distinct if(if_follow = 2,uid,null))来计算流失粉丝数。
  4. 计算总粉丝量:总粉丝量是每个月新增的粉丝数减去流失的粉丝数的累计和。我们使用SUM(IF(if_follow = 2, -1, if_follow))来计算每个月的净增粉丝数,并使用窗口函数OVER来计算累计和。
  5. 分组和排序:最后,我们需要按照创作者和月份分组,并按照创作者和总粉丝量排序。

SELECT author, -- 选择创作者字段substr(end_time,1,7) AS month -- 将end_time字段截取到年和月,作为月份字段,round((COUNT(distinct if(if_follow = 1,uid,null)) -- 计算新增粉丝数量-COUNT(distinct if(if_follow = 2,uid,null ))) / COUNT(distinct a.id),3) AS fans_growth_rate -- 计算涨粉率,取三位小数,sum(SUM(IF(if_follow = 2, -1, if_follow))) over(PARTITION BY author order by substr(end_time,1,7)) as total_fans -- 使用窗口函数计算截止当月的总粉丝量
FROM tb_user_video_log a -- 从用户视频日志表中选择数据
LEFT JOIN tb_video_info b -- 与视频信息表进行左连接
ON a.video_id = b.video_id -- 通过video_id关联两个表
where substr(end_time,1,4) >='2021' -- 筛选出2021年的数据
GROUP BY author, -- 按创作者分组substr(end_time,1,7) -- 按月份分组
order by author asc , -- 按照创作者名称进行升序排序total_fans asc; -- 按照总粉丝量进行升序排序

相关文章:

SQL159 每个创作者每月的涨粉率及截止当前的总粉丝量

描述 用户-视频互动表tb_user_video_log iduidvideo_idstart_timeend_timeif_followif_likeif_retweetcomment_id110120012021-09-01 10:00:002021-09-01 10:00:20011NULL210520022021-09-10 11:00:002021-09-10 11:00:30101NULL310120012021-10-01 10:00:002021-10-01 10:00…...

Linux安装MySQL教程【带图文命令巨详细】

巨详细Linux安装MySQL 1、查看是否有自带数据库或残留数据库信息1.1检查残留mysql1.2检查并删除残留mysql依赖1.3检查是否自带mariadb库 2、下载所需MySQL版本,上传至系统指定位置2.1创建目录2.2下载MySQL压缩包 3、安装MySQL3.1创建目录3.2解压mysql压缩包3.3安装解…...

外部排序快速入门详解:基本原理,败者树,置换-选择排序,最佳归并树

文章目录 外部排序1.最基本的外部排序原理2.外部排序的优化2.1 败者树优化方法2.2 置换-选择排序优化方法2.3 最佳归并树 外部排序 为什么要学习外部排序? 答: 在处理数据的过程中,我们需要把磁盘(外存)中存储的数据拿到内存中处理…...

人工智能和物联网如何结合

欢迎来到 Papicatch的博客 目录 ​ 🍉引言 🍉AI与IoT的结合方式 🍈数据处理和分析 🍍实例 🍈边缘计算 🍍实例 🍈自动化和自主操作 🍍实例 🍈安全和隐私保护 &…...

【JAVASE】JAVA应用案例(下)

一:抢红包 一个大V直播时,发起了抢红包活动,分别有9,666,188,520,99999五个红包。请模拟粉丝来抽奖,按照先来先得,随机抽取,抽完即止,注意:一个红包只能被抽一次,先抽或…...

【面试干货】 B 树与 B+ 树的区别

【面试干货】 B 树与 B 树的区别 1、B 树2、 B 树3、 区别与优缺点比较4、 总结 💖The Begin💖点点关注,收藏不迷路💖 在数据库系统中,B 树和 B 树是常见的索引结构,它们在存储和组织数据方面有着不同的设计…...

Socket编程权威指南(四)彻底解密 Epoll 原理

在上一篇文章中,我们优化了基于 Socket 的网络服务器,从最初的 select/poll 模型进化到了高效的 epoll。很多读者对 epoll 的惊人性能表示极大的兴趣,对它的工作原理也充满了好奇。今天,就让我们一起揭开 epoll 神秘的面纱&#x…...

Windows开始ssh服务+密钥登录+默认启用powershell

文章内所有的命令都在power shell内执行,使用右键单击Windows徽标,选择终端管理员即可打开 Windows下OpenSSH的安装 打开Windows power shell,检查SSH服务的安装状态。会返回SSH客户端和服务器的安装状态,一下是两个都安装成功的…...

实体商铺私域流量打造策略:从引流到转化的全链路解析

在数字化时代,实体商铺面临着前所未有的挑战与机遇。随着线上购物的兴起,传统商铺如何吸引并留住顾客,成为了每个实体店家必须面对的问题。私域流量的打造,正是解决这一问题的关键所在。本文将从引流、留存、转化三个方面&#xf…...

实战 | 通过微调SegFormer改进车道检测效果(数据集 + 源码)

背景介绍 SegFormer:实例分割在自动驾驶汽车技术的快速发展中发挥了关键作用。对于任何在道路上行驶的车辆来说,车道检测都是必不可少的。车道是道路上的标记,有助于区分道路上可行驶区域和不可行驶区域。车道检测算法有很多种,每…...

翻译《The Old New Thing》- Why do messages posted by PostThreadMessage disappear?

Why do messages posted by PostThreadMessage disappear? - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20090930-00/?p16553 Raymond Chen 2008年09月30日 为什么 PostThreadMessage 发布的信息会消失? 在显示用户界面的线…...

【深度学习】—— 神经网络介绍

神经网络介绍 本系列主要是吴恩达深度学习系列视频的笔记,传送门:https://www.coursera.org/deeplearning-ai 目录 神经网络介绍神经网络的应用深度学习兴起的原因 神经网络,全称人工神经网络(Artificial Neural Network&#xf…...

python-数字黑洞

[题目描述] 给定一个三位数,要求各位不能相同。例如,352是符合要求的,112是不符合要求的。将这个三位数的三个数字重新排列,得到的最大的数,减去得到的最小的数,形成一个新的三位数。对这个新的三位数可以重…...

SpringCloud 负载均衡 spring-cloud-starter-loadbalancer

简述 spring-cloud-starter-loadbalancer 是 Spring Cloud 中的一个组件,它提供了客户端负载均衡的功能。在 Spring Cloud 的早期版本中,Netflix Ribbon 被广泛用作客户端负载均衡器,但随着时间推移和 Netflix Ribbon 进入维护模式&#xff…...

牛客周赛-46

牛客周赛-46 a乐奈吃冰b素世喝茶c爱音开灯d小灯做题 a乐奈吃冰 ac code #include<iostream> using namespace std; int main(){long long a,b;cin>>a>>b;int tmpmin(b,a/2);long long resatmp;cout<<res;return 0; }b素世喝茶 #include<iostream…...

多模态vlm综述:An Introduction to Vision-Language Modeling 论文解读

目录 1、基于对比学习的VLMs 1.1 CLIP 2、基于mask的VLMs 2.1 FLAVA 2.2 MaskVLM 2.3 关于VLM目标的信息理论视角 3、基于生成的VLM 3.1 学习文本生成器的例子: 3.2 多模态生成模型的示例: 3.3 使用生成的文本到图像模型进行下游视觉语言任务 4、 基于预训练主干网…...

28.找零

上海市计算机学会竞赛平台 | YACSYACS 是由上海市计算机学会于2019年发起的活动,旨在激发青少年对学习人工智能与算法设计的热情与兴趣,提升青少年科学素养,引导青少年投身创新发现和科研实践活动。https://www.iai.sh.cn/problem/744 题目描述 有一台自动售票机,每张票卖 …...

[方法] 《鸣潮》/《原神》呼出与锁定光标的功能细节

本方法适用于Cinemachine - FreeLook。 1. 锁定与呼出光标的功能实现 // 锁定光标 private void LockMouse() {// 将光标锁定在屏幕中间Cursor.lockState CursorLockMode.Locked;// 隐藏光标Cursor.visible false; }// 呼出光标 private void UnLockMouse() {// 释放光标Cu…...

计算机网络-NAT配置与ACL

目录 一、ACL 1、ACL概述 2、ACL的作用 3、ACL的分类 4、ACL的配置格式 二、NAT 1、NAT概述 2、NAT分类 2.1 、 静态NAT 2.2 、 动态NAT 3、NAT的功能 4、NAT的工作原理 三、NAT配置 1、静态NAT配置 2、动态NAT配置 四、总结 一、ACL 1、ACL概述 ACL&#xff…...

哈尔滨三级等保测评需要测哪些设备?

哈尔滨三级等保测评需要测的设备&#xff0c;主要包括物理安全设备、网络安全设备和应用安全设备三大类别。这些设备在保障哈尔滨地区信息系统安全方面发挥着至关重要的作用。 首先&#xff0c;物理安全设备是确保信息系统实体安全的基础。在哈尔滨三级等保测评中&#xff0c;物…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...