当前位置: 首页 > news >正文

基于ChatGLM3的本地问答机器人部署流程

基于ChatGLM3的本地问答机器人部署流程

  • 前言
  • 一、确定文件结构
    • 1.新建文件夹储存本地模型
    • 2.下载源码和模型
  • 二、Anaconda环境搭建
    • 1.创建anaconda环境
    • 2.安装相关库
    • 3.设置本地模型路径
    • 4.启动
  • 三、构建本地知识库
    • 1.下载并安装postgresql
    • 2.安装c++库
    • 3.配置向量插件
  • 四、线上运行
  • 五、 全部命令

前言

部署完成后视频演示

https://www.bilibili.com/video/BV1fV3XePEi4/?spm_id_from=333.1007.top_right_bar_window_dynamic.content.click&vd_source=c5d972a40f6877b991f3c691467df568

参考链接:

https://github.com/THUDM/ChatGLM3
https://github.com/chatchat-space/Langchain-Chatchat
#微调
https://github.com/THUDM/ChatGLM3/blob/main/finetune_demo/README.md
https://zhipu-ai.feishu.cn/wiki/QiLtwks1YioOSEkCxFIcAEWNnzb
https://github.com/chatchat-space/Langchain-Chatchat/wiki/

#基于ChatGLM3的本地测井问答机器人设计文档

https://download.csdn.net/download/qq_51985653/89406695

一、确定文件结构

1.新建文件夹储存本地模型

在这里插入图片描述

2.下载源码和模型

#若下载较慢也可复制链接手动下载到本地

git clone https://huggingface.co/THUDM/chatglm2-6b-32k
git clone https://huggingface.co/moka-ai/m3e-base
git clone https://github.com/chatchat-space/Langchain-Chatchat.git

下载完成后的文件结构
在这里插入图片描述

二、Anaconda环境搭建

1.创建anaconda环境

打开anaconda终端,创建并激活环境

conda create -n log-chat python=3.10
conda activate log-chat

在这里插入图片描述

2.安装相关库

conda install spacy
pip install cchardet 
pip install accelerate
pip install --upgrade pip
pip install -r requirements.txt

在这里插入图片描述

3.设置本地模型路径

来到llm-chat模型的configs文件夹下,修改model_config.py的内容
在这里插入图片描述

将LLM_MODELS设置为本地下载的模型文件

LLM_MODELS = ["chatglm2-6b-32k"]

在这里插入图片描述

在MODEL_PATH 中将m3e-base设置为本地路径

在这里插入图片描述

将llm_model中的chatglm2-6b-32k设置为本地模型路径,若本地有其他模型文件则同理

在这里插入图片描述

4.启动

在anaconda终端中进行启动

cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
python startup.py --all-webui

在这里插入图片描述

三、构建本地知识库

1.下载并安装postgresql

在这里插入图片描述

2.安装c++库

在这里插入图片描述

3.配置向量插件

在这里插入图片描述

在这里插入图片描述

在Developer Command Prompt for Vs 2022终端进入源码目录下并执行call命令

cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
call “E:\Softwares\Microsoft Visual tudio\2022\Community\VC\Auxiliary\Build\vcvars64.bat”

在这里插入图片描述

set "PGROOT=E:\Softwares\PostgreSQL\16"
git clone -branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install

#打开pgAdmin4,创建数据库并安装向量插件

在这里插入图片描述

在这里插入图片描述

四、线上运行

服务器租赁:https://www.autodl.com/

#autodl部署启动命令
cd /root/Langchain-Chatchat/
conda activate /root/pyenv
python startup.py -a
#服务器连接本地参考命令
ssh -CNg -L  8501:127.0.0.1:8501 featurize@workspace.featurize.cn -p 56656ssh -CNg -L 6006:127.0.0.1:6006 root@123.125.240.150 -p 42151#其中root@123.125.240.150和42151分别是实例中SSH指令的访问地址与端口,
#请找到自己实例的ssh指令做相应替换。
#6006:127.0.0.1:6006是指代理实例内6006端口到本地的6006端口。

在这里插入图片描述

添加本地文件到知识库
在这里插入图片描述
在这里插入图片描述

五、 全部命令

#完成建立放置本地模型文件夹后在Anaconda终端执行下述命令
#其中相关路径要修改为自己对应的本地路径#下载模型
git clone https://huggingface.co/THUDM/chatglm2-6b-32k
git clone https://huggingface.co/moka-ai/m3e-base
git clone https://github.com/chatchat-space/Langchain-Chatchat.git#创建并激活conda环境
conda create -n log-chat python=3.10
conda activate log-chat#在模型对应路径下安装相关库
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
conda install spacy
pip install cchardet 
pip install accelerate
pip install --upgrade pip
pip install -r requirements.txtcd configs 
cp ./model_config.py.example  ./model_config.pycp ./server_config.py.example  ./server_config.pycp ./basic_config.py.example  ./basic_config.pycp ./kb_config.py.example  ./kb_config.py
cp ./prompt_config.py.example  ./prompt_config.py
#修改llm-chat配置文件使其使用本地模型
#修改model_config.py文件内容#anaconda中启动
conda activate log-chat
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
python startup.py --all-webui#下载postgresql
#https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
#下载visualstudio 安装c++环境
#https://visualstudio.microsoft.com/zh-hans/downloads
#在Developer Command Prompt for Vs 2022终端进入源码目录下
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat#执行call命令
call “E:\Softwares\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvars64.bat”#执行下述命令
set "PGROOT=E:\Softwares\PostgreSQL\16"
git clone -branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install#打开pgAdmin4,创建数据库并安装向量插件
CREATE DATABASE TEST;
CREATE EXTENSION IF NOT EXISTS vector;#打开anaconda终端
conda activate log-chat
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat\configs
python -m spacy download en_core_web_sm
python -m spacy download zh_core_web_sm
pip install psycopg2
pip install pgvetor
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat\
python init_database.py --recreate-vs#启动
python startup.py -a
#之后在网页端上传知识库文件即可

相关文章:

基于ChatGLM3的本地问答机器人部署流程

基于ChatGLM3的本地问答机器人部署流程 前言一、确定文件结构1.新建文件夹储存本地模型2.下载源码和模型 二、Anaconda环境搭建1.创建anaconda环境2.安装相关库3.设置本地模型路径4.启动 三、构建本地知识库1.下载并安装postgresql2.安装c库3.配置向量插件 四、线上运行五、 全…...

归并排序——逆序数对的统计

逆序数对的统计 题目描述 运行代码 #include <iostream> using namespace std; #define LL long long const int N 1e5 5; int a[N], tmp[N]; LL merge_sort(int q[], int l, int r) {if (l > r)return 0; int mid l r >> 1; LL res merge_sort(q, l,…...

基于截图和模拟点击的自动化压测工具开发(MFC)

1.背景 想对一个MFC程序做自动压测功能&#xff0c;根据判断程序界面某块区域是否达到预定状态&#xff0c;来自动执行鼠标点击或者键盘输入的操作&#xff0c;以解决测试人员需要重复手动压测问题。 1.涉及的技术 串口控制&#xff0c;基于MFC橡皮筋类(CRectTracker)做一个…...

力扣每日一题 6/10

881.救生艇[中等] 题目&#xff1a; 给定数组 people 。people[i]表示第 i 个人的体重 &#xff0c;船的数量不限&#xff0c;每艘船可以承载的最大重量为 limit。 每艘船最多可同时载两人&#xff0c;但条件是这些人的重量之和最多为 limit。 返回 承载所有人所需的最小船…...

[知识点] 内存顺序属性的用途和行为

C标准库中定义了以下几种内存顺序属性&#xff1a; std::memory_order_relaxedstd::memory_order_consumestd::memory_order_acquirestd::memory_order_releasestd::memory_order_acq_relstd::memory_order_seq_cst 1. std::memory_order_relaxed 定义&#xff1a;不提供同步…...

JAVA Mongodb 深入学习(二)索引的创建和优化

一、常用索引类型 1、单个索引 单个索引的创建 db.你的表名.createIndex({"你的字段名":1}) 单个索引的创建且是唯一索引 db.你的表名.createIndex({"你的字段名":1}),{ unique: true }) 2、复合索引 将多个过滤的字段&#xff0c;做成索引&#xff0c;…...

转让北京劳务分包地基基础施工资质条件和流程

地基基础资质转让流程是怎样的?对于企业来说&#xff0c;资质证书不仅是实力的证明&#xff0c;更是获得工程承包的前提。而在有了资质证书后&#xff0c;企业才可以安心的准备工程投标&#xff0c;进而在工程竣工后获得收益。而对于从事地基基础工程施工的企业&#xff0c;需…...

Python基础——字符串

一、Python的字符串简介 Python中的字符串是一种计算机程序中常用的数据类型【可将字符串看作是一个由字母、数字、符号组成的序列容器】&#xff0c;字符串可以用来表示文本数据。 通常使用一对英文的单引号&#xff08;&#xff09;或者双引号&#xff08;"&#xff09;…...

AP的数据库性能到底重要吗?

先说结论&#xff1a;没那么重要。甚至可能不重要。 我用我的经历和分析给大家说说。诸位看看如何。 不重要的观点是不是不能接受&#xff1f; 因为这些是站在我们角度觉得的。而实际上使用者&#xff08;业务或者用户&#xff09;&#xff0c;真的不太在乎我们所在乎的。 …...

Vue3【二】 VSCode需要安装的Vue语法插件

VSCode需要安装的 适配Vue3的插件 Vue-Official插件安装...

设置路径别名

一、描述 如果想要给路径设置为别名&#xff0c;就是常见的有些项目前面的引入文件通过开头的&#xff0c;也就是替换了一些固定的文件路径&#xff0c;怎么配置。 二、配置 import { defineConfig } from vite import react from vitejs/plugin-react import path from path…...

人事信息管理系统(Java+MySQL)

一、项目背景 在现代企业中&#xff0c;管理大量员工的工作信息、薪资、请假、离职等事务是一项非常繁琐和复杂的任务。传统的手工管理方式不仅效率低下&#xff0c;而且容易出错。为了提高人事管理的效率&#xff0c;减少人工操作带来的错误&#xff0c;企业迫切需要一个高效…...

Python 中生成器与普通函数的区别

在Python中&#xff0c;生成器和普通函数有一些区别。 生成器使用 yield 语句从函数中返回一个值&#xff0c;而不是使用 return 语句。当生成器函数被调用时&#xff0c;它会返回一个迭代器对象&#xff0c;而非立即执行函数体内的代码。 生成器函数可以通过多次调用 yield 语…...

最小栈、栈的弹出(C++)

1.最小栈 思路分析&#xff1a; 代码&#xff1a; class MinStack { public:MinStack() {}void push(int val) {st.push(val);//两种情况需要更新最小值//1.最小栈为空(就是存最小值的那个栈)//2.插入的值小于或等于最小栈的栈顶元素if(minstack.empty()||minstack.top()>…...

20240607每日通信--------VUE3前端引入scoket-io,后端引入Netty-SocketIO,我成功了,希望一起交流沟通

无语 前置&#xff1a; VUE3 前端集成scoket-io socket.io-client Sringboot 3.0JDK17集成Netty-SocketIO Netty-SocketIO 失败原因一&#xff1a; 前期决定要写demo时候&#xff0c;单独了解了&#xff0c;后端引入Netty-SocketIO注意事项&#xff0c;详见我先头写的博客 前…...

Tomcat源码解析(八):一个请求的执行流程(附Tomcat整体总结)

Tomcat源码系列文章 Tomcat源码解析(一)&#xff1a;Tomcat整体架构 Tomcat源码解析(二)&#xff1a;Bootstrap和Catalina Tomcat源码解析(三)&#xff1a;LifeCycle生命周期管理 Tomcat源码解析(四)&#xff1a;StandardServer和StandardService Tomcat源码解析(五)&…...

python使用gdb进行堆栈查看与调试

以ubuntu示例&#xff0c;先安装gdb与python-dbg&#xff0c;dbg按照python版本安装 apt install -y gdb python3.10-dbg 使用top查看python进程&#xff0c;使用gdb操作python进程 gdb python3 6618 加载环境 source /usr/share/gdb/auto-load/usr/bin/python3.10-gdb.py…...

【DevOps】路由与路由器详细介绍:原理、功能、类型及应用场景

目录 一、路由详细介绍 1、什么是路由&#xff1f; 2、路由的基本原理 3、 路由协议 静态路由 动态路由 4、 路由表 5、 路由算法 6、路由的优缺点 优点 缺点 7、 路由应用场景 二、路由器详细介绍 1、什么是路由器&#xff1f; 2、 路由器的工作原理 3、路由器…...

【WP|9】深入解析WordPress [add_shortcode]函数

add_shortcode 是 WordPress 中一个非常强大的函数&#xff0c;用于创建自定义的短代码&#xff08;shortcodes&#xff09;。短代码是一种简洁的方式&#xff0c;允许用户在内容中插入动态的、可重用的功能。通过 add_shortcode&#xff0c;开发者可以定义自己的短代码&#x…...

Qt QStackedWidget类详细分析

一.定义 QStackedWidget类是一个容器控件&#xff0c;它提供了一个堆叠的页面布局方式&#xff0c;每个页面可以包含一个子部件。在QStackedWidget中&#xff0c;只有当前活动的页面是可见的&#xff0c;其他页面会被隐藏起来。 QStackedWidget类的常用方法包括&#xff1a; a…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践&#xff0c;很多人以为AI已经强大到不需要程序员了&#xff0c;其实不是&#xff0c;AI更加需要程序员&#xff0c;普通人…...

RLHF vs RLVR:对齐学习中的两种强化方式详解

在语言模型对齐&#xff08;alignment&#xff09;中&#xff0c;强化学习&#xff08;RL&#xff09;是一种重要的策略。而其中两种典型形式——RLHF&#xff08;Reinforcement Learning with Human Feedback&#xff09; 与 RLVR&#xff08;Reinforcement Learning with Ver…...

【多线程初阶】单例模式 指令重排序问题

文章目录 1.单例模式1)饿汉模式2)懒汉模式①.单线程版本②.多线程版本 2.分析单例模式里的线程安全问题1)饿汉模式2)懒汉模式懒汉模式是如何出现线程安全问题的 3.解决问题进一步优化加锁导致的执行效率优化预防内存可见性问题 4.解决指令重排序问题 1.单例模式 单例模式确保某…...