当前位置: 首页 > news >正文

AI数据分析:根据Excel表格数据绘制柱形图

工作任务:将Excel文件中2013年至2019年间线上图书的销售额,以条形图的形式呈现,每个条形的高度代表相应年份的销售额,同时在每个条形上方标注具体的销售额数值

在deepseek中输入提示词:

你是一个Python编程专家,要完成一个Python脚本编写的任务,具体步骤如下:

读取xls格式的Excel文件"F:\AI自媒体内容\books.xlsx"的第二个工作表:Sheet2,

用matplotlib绘制一个柱状图:

获取C1单元格到C8单元格的内容作为x轴的数据。

获取G1单元格到G8单元格的内容作为y轴的数据。

绘制y轴上的虚线网格。

设置x轴标签为“年份”。

设置y轴标签为“线上销售额(元)”。

设置图表的标题为“2013-2019年线上图书销售额分析图”。

设置柱状图中每个柱子的宽度=0.5,对齐方式:居中对齐,颜色为蓝色,透明度=0.5,底部起始位置=0.8;

对于每个柱子,上方添加文本标签,显示销售额的值,并格式化为千位分隔符格式;文本的字体大小为9,颜色为红色,透明度为0.9。

添加图例,包含标签“销售额”。

设置matplotlib默认字体为'SimHei',文件路径为:C:\Windows\Fonts\simhei.ttf

保存图片到文件夹“F:\AI自媒体内容”;

显示图片;

注意:每一步都输出信息到屏幕

源代码:

import pandas as pd

import matplotlib.pyplot as plt

# 设置matplotlib默认字体

plt.rcParams['font.sans-serif'] = ['SimHei'] # 雅黑字体

plt.rcParams['axes.unicode_minus'] = False # 正确显示负号

# 读取Excel文件的第二个工作表

file_path = "F:\\AI自媒体内容\\books.xlsx"

sheet_name = "Sheet2"

df = pd.read_excel(file_path, sheet_name=sheet_name)

# 获取x轴和y轴数据

x_data = df.iloc[0:8, 2].values # C列的数据,从第二行到第八行

y_data = df.iloc[0:8, 6].values # G列的数据,从第二行到第八行

# 创建柱状图

fig, ax = plt.subplots()

bars = ax.bar(x_data, y_data, width=0.3, align='center', color='b', alpha=0.5, bottom=0.8)

# 添加文本标签

for bar in bars:

height = bar.get_height()

ax.text(bar.get_x() + bar.get_width() / 2, height,

'{:,.0f}'.format(height),

ha='center', va='bottom', fontsize=9, color='r', alpha=0.9)

# 绘制y轴上的虚线网格

ax.yaxis.grid(True, linestyle='dashed')

# 设置x轴和y轴标签

ax.set_xlabel('年份')

ax.set_ylabel('线上销售额(元)')

# 设置图表标题

ax.set_title('2013-2019年线上图书销售额分析图')

# 添加图例

ax.legend([bars], ['销售额'])

# 显示图片

plt.show()

# 保存图片

save_path = "F:\\AI自媒体内容\\sales_analysis.png"

plt.savefig(save_path)

print(f"图片已保存到:{save_path}")

相关文章:

AI数据分析:根据Excel表格数据绘制柱形图

工作任务:将Excel文件中2013年至2019年间线上图书的销售额,以条形图的形式呈现,每个条形的高度代表相应年份的销售额,同时在每个条形上方标注具体的销售额数值 在deepseek中输入提示词: 你是一个Python编程专家&#…...

基于协调过滤算法商品推荐系统的设计

管理员账户功能包括:系统首页,个人中心,商品管理,论坛管理,商品资讯管理 前台账户功能包括:系统首页,个人中心,论坛,商品资讯,商家,商品 开发系统…...

CS1061 “HtmlHelper”未包含“Partial”的定义,并且找不到可接受第一个“HtmlHelper”类型参数的可访问扩展方法“Partial”

严重性 代码 说明 项目 文件 行 禁止显示状态 错误 CS1061 “HtmlHelper”未包含“Partial”的定义,并且找不到可接受第一个“HtmlHelper”类型参数的可访问扩展方法“Partial”(是否缺少 using 指令或程序集引用?) 14_Views_Message_E…...

大数据运维学习笔记之flink standalone flink on yarn集群搭建 —— 筑梦之路

...

在知识的海洋中航行:问题的演变与智慧的追求

在信息技术迅猛发展的今天,互联网和人工智能已成为我们生活中不可或缺的一部分。它们像是一座座灯塔,照亮了知识的海洋,使得曾经难以触及的知识变得触手可及。随着这些技术的普及,越来越多的问题能够迅速得到答案。然而&#xff0…...

splice()、slice()、split()三种方法的区别

slice slice() 方法返回一个新的数组对象,这一对象是一个由 start 和 end 决定的原数组的浅拷贝(包括 start,不包括 end),其中 start 和 end 代表了数组元素的索引。原始数组不会被改变。 const animals [ant, bison…...

iOS 之homebrew ruby cocoapods 安装

cocoapods安装需要ruby,更新ruby需要rvm,下载rvm需要gpg,下载gpg需要homebrew,所以安装顺序是homebrew->gpg->rvm->ruby-cocoapods Rvm 官网: RVM: Ruby Version Manager - RVM Ruby Version Manager - Docum…...

【栈】2751. 机器人碰撞

本文涉及知识点 栈 LeetCode2751. 机器人碰撞 现有 n 个机器人,编号从 1 开始,每个机器人包含在路线上的位置、健康度和移动方向。 给你下标从 0 开始的两个整数数组 positions、healths 和一个字符串 directions(directions[i] 为 ‘L’ …...

贪心算法06(leetcode738,968)

参考资料&#xff1a; https://programmercarl.com/0738.%E5%8D%95%E8%B0%83%E9%80%92%E5%A2%9E%E7%9A%84%E6%95%B0%E5%AD%97.html 738. 单调递增的数字 题目描述&#xff1a; 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。…...

cve_2022_0543-redis沙盒漏洞复现 vulfocus

1. 原理 该漏洞的存在是因为Debian/Ubuntu中的Lua库是作为动态库提供的。自动填充了一个package变量&#xff0c;该变量又允许访问任意 Lua 功能。 2.复现 我们可以尝试payload&#xff1a; eval local io_l package.loadlib("/usr/lib/x86_64-linux-gnu/liblua5.1.so…...

浅解Reids持久化

Reids持久化 RDB redis的存储方式&#xff1a; rdb文件都是二进制&#xff0c;很小&#xff0c;里面存的是数据 实现方式 redis-cli链接到redis服务端 使用save命令 注&#xff1a;不推荐 因为save命令是直接写到磁盘里面&#xff0c;速度特别慢&#xff0c;一般都是redis…...

Java24:会话管理 过滤器 监听器

一 会话管理 1.cookie 是一种客户端会话技术&#xff0c;cookie由服务端产生&#xff0c;它是服务器存放在浏览器的一小份数据&#xff0c;浏览器 以后每次访问服务器的时候都会将这小份的数据带到服务器去。 //创建cookie对象 Cookie cookie1new Cookie("…...

web前端电影简介标签:深度解析与创意应用

web前端电影简介标签&#xff1a;深度解析与创意应用 在web前端开发中&#xff0c;电影简介标签的设计与实现是一项既具挑战性又充满创意的任务。这些标签不仅需要准确传达电影的核心信息&#xff0c;还要通过精美的设计和交互效果吸引用户的眼球。本文将从四个方面、五个方面…...

Java面向对象-方法的重写、super

Java面向对象-方法的重写、super 一、方法的重写二、super关键字1、super可以省略2、super不可以省略3、super修饰构造器4、继承条件下构造方法的执行过程 一、方法的重写 1、发生在子类和父类中&#xff0c;当子类对父类提供的方法不满意的时候&#xff0c;要对父类的方法进行…...

解锁ChatGPT:从GPT-2实践入手解密ChatGPT

⭐️我叫忆_恒心&#xff0c;一名喜欢书写博客的研究生&#x1f468;‍&#x1f393;。 如果觉得本文能帮到您&#xff0c;麻烦点个赞&#x1f44d;呗&#xff01; 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧&#xff0c;喜欢的小伙伴给个三连支…...

20240605解决飞凌的OK3588-C的核心板刷机原厂buildroot不能连接ADB的问题

20240605解决飞凌的OK3588-C的核心板刷机原厂buildroot不能连接ADB的问题 2024/6/5 13:53 rootrootrootroot-ThinkBook-16-G5-IRH:~/repo_RK3588_Buildroot20240508$ ./build.sh --help rootrootrootroot-ThinkBook-16-G5-IRH:~/repo_RK3588_Buildroot20240508$ ./build.sh lun…...

c++手写的bitset

支持stl bitset 类似的api #include <iostream> #include <vector> #include <climits> #include <utility> #include <stdexcept> #include <iterator>using namespace std;const int W 64;class Bitset { private:vector<unsigned …...

【机器学习系列】深入理解集成学习:从Bagging到Boosting

目录 一、集成方法的一般思想 二、集成方法的基本原理 三、构建集成分类器的方法 常见的有装袋&#xff08;Bagging&#xff09;和提升&#xff08;Boosting&#xff09;两种方法 方法1 &#xff1a;装袋&#xff08;Bagging&#xff09; Bagging原理如下图&#xff1a; …...

用FFMPEG对YUV序列进行编辑的笔记

还是单独开一个吧 每次找挺烦的 播放YUV序列 ffmpeg -f rawvideo -pix_fmt yuv420p -s 3840x2160 -i "Wood.yuv" -vf "scale1280x720" -c:v rawvideo -pix_fmt yuv420p -f sdl "Wood"4K序列转720P ffmpeg -f rawvideo -pix_fmt yuv420p -s 38…...

智能投顾:重塑金融理财市场,引领行业新潮流

一、引言 在数字化浪潮的推动下,金融行业正经历着前所未有的变革。其中,智能投顾作为金融科技的重要分支,以其高效、便捷和个性化的服务,逐渐成为金融理财市场的新宠。本文旨在探讨智能投顾如何引领金融理财新潮流,通过丰富的案例及解决方案,展示其独特的魅力和价值。 二…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...