当前位置: 首页 > news >正文

Hadoop小结

Hadoop是什么

Hadoop是一 个由Apache基金 会所开发的分布式系统基础架构。主要解决,海量数据的存储和海量数据的分析计算问题。广义上来说,Hadoop通 常是指一个更广泛的概念一Hadoop 生态圈。

Hadoop优势

Hadoop组成

HDFS架构

Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。

HDFS优缺点

优点

缺点

HDFS组成架构

常用命令实操

[atguigu@hadoop102 hadoop-3.1.3]$ bin/hadoop fs
[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-count [-q] <path> ...]
[-cp [-f] [-p] <src> ... <dst>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...]
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getmerge [-nl] <src> <localdst>]
[-help [cmd ...]]
[-ls [-d] [-h] [-R] [<path> ...]]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>]
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]
[-put [-f] [-p] <localsrc> ... <dst>]
[-rm [-f] [-r|-R] [-skipTrash] <src> ...]
[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
<acl_spec> <path>]]
[-setrep [-R] [-w] <rep> <path> ...]
[-stat [format] <path> ...]
[-tail [-f] <file>]
[-test -[defsz] <path>]
[-text [-ignoreCrc] <src> ...]

上传

1)-moveFromLocal:从本地剪切粘贴到HDFS

[atguigu@hadoop102 hadoop-3.1.3]$ vim shuguo.txt

输入:shuguo

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -moveFromLocal ./shuguo.txt /sanguo

(./shuguo.txt 是当前路径 /sanguo是目标路径,也就是把shuguo.txt剪切到hdfs的/sanguo路径下去)

2)-copyFromLocal:从本地文件系统中拷贝文件到HDFS路径去

[atguigu@hadoop102 hadoop-3.1.3]$ vim weiguo.txt

输入:weiguo

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -copyFromLocal weiguo.txt /sanguo

3)-put:等同于copyFromLocal,生产环境更习惯用put

[atguigu@hadoop102 hadoop-3.1.3]$ vim wuguo.txt

输入:wuguo

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -put ./wuguo.txt /sanguo

4)-appendToFile:追加一个文件到已经存在的文件末尾

[atguigu@hadoop102 hadoop-3.1.3]$ vim liubei.txt

输入:liubei

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -appendToFile liubei.txt /sanguo/shuguo.txt

下载

1)-copyToLocal:从HDFS拷贝到本地

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -copyToLocal /sanguo/shuguo.txt ./

2)-get:等同于copyToLocal,生产环境更习惯用get

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -get /sanguo/shuguo.txt ./shuguo2.txt

HDFS直接操作

1)-ls: 显示目录信息

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -ls /sanguo

2)-cat:显示文件内容

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -cat /sanguo/shuguo.txt

3)-chgrp、-chmod、-chown:Linux文件系统中的用法一样,修改文件所属权限

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -chmod 666 /sanguo/shuguo.txt

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -chown atguigu:atguigu /sanguo/shuguo.txt

4)-mkdir:创建路径

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /jinguo

5)-cp:从HDFS的一个路径拷贝到HDFS的另一个路径

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -cp /sanguo/shuguo.txt /jinguo

6)-mv:在HDFS目录中移动文件

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -mv /sanguo/wuguo.txt /jinguo

7)-tail:显示一个文件的末尾1kb的数据

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -tail /jinguo/shuguo.txt

8)-rm:删除文件或文件夹

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -rm /sanguo/shuguo.txt

9)-rm -r:递归删除目录及目录里面内容

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -rm -r /sanguo

10)-du统计文件夹的大小信息

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -du -s -h /jinguo

27 81 /jinguo

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -du -h /jinguo(分别查看文件李的每个文件所占容量大小,第一个数是单个文件的容量,第二个数字是多个副本共同所占的容量)

14 42 /jinguo/shuguo.txt
7 21 /jinguo/weiguo.txt
6 18 /jinguo/wuguo.tx

说明:27表示文件大小;81表示27*3个副本;/jinguo表示查看的目录

11)-setrep:设置HDFS中文件的副本数量

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -setrep 10 /jinguo/shuguo.txt

这里设置的副本数只是记录在NameNode的元数据中,是否真的会有这么多副本,还得看DataNode的数量。因为目前只有3台设备,最多也就3个副本,只有节点数的增加到10台时,副本数才能达到10。

YARN架构

Yet Another Resource Negotiator简称YARN ,另一种资源协调者,是Hadoop的资源管理器。

MapReduce架构

MapReduce是一个分布式运算程序的编程框架,MapReduce将计算过程分为两个阶段:Map和Reduce

  • Map阶段并行处理输入数据

  • Reduce阶段对Map结果进行汇总

MapReduce优缺点

优点

1)MapReduce易于编程

它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。

2)良好的扩展性

当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。

3)高容错性

MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。

4)适合PB级以上海量数据的离线处理

可以实现上千台服务器集群并发工作,提供数据处理能力。

缺点

1)不擅长实时计算

MapReduce无法像MySQL一样,在毫秒或者秒级内返回结果。

2)不擅长流式计算

流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。

3)不擅长DAG(有向无环图)计算

多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。

MapReduce核心思想

(1)分布式的运算程序往往需要分成至少2个阶段。

(2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

(3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

(4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

MapReduce进程

一个完整的MapReduce程序在分布式运行时有三类实例进程:

(1)MrAppMaster:负责整个程序的过程调度及状态协调。

(2)MapTask:负责Map阶段的整个数据处理流程。

(3)ReduceTask:负责Reduce阶段的整个数据处理流程。

HDFS、YARN、MapReduce三者关系

遇到的bug

bug1

报错信息

在使用自动化部署的脚本的时候,报错连接不上数据库

报错原因

在确定数据库账号密码和ip地址无误的情况下,还是连接不上数据库,最后发现是自动化脚本不支持mysql8.0+

解决办法

在虚拟机上安装mysql5.7.41

bug2

参考文章:https://blog.csdn.net/qq_20780541/article/details/122035569安装mysql有很多报错

报错信息

报错原因

因为没有路径也没有权限,所以创建此路径并授权给mysql用户

解决办法

mkdir /var/log/mariadb
touch /var/log/mariadb/mariadb.log
# 用户组及用户
chown -R mysql:mysql /var/log/mariadb/
/usr/local/mysql/support-files/mysql.server start

报错信息

解决办法

mkdir /var/lib/mysql
chmod 777 /var/lib/mysql

报错信息

解决办法

ln -s /var/lib/mysql/mysql.sock /tmp/mysql.sock

报错信息

Host is not allowed to connect to this MySQL server

解决办法

use mysql;
update user set user.Host='%' where user.User='root';
flush privileges;
或
GRANT ALL PRIVILEGES ON *.* TO 'root'@'%'IDENTIFIED BY 'Admin123@qwe' WITH GRANT OPTION;
flush privileges;

报错信息

ERROR 1130: Host '192.168.10.173' is not allowed to connect to this MySQL ERROR 1062 (23000): Duplicate entry '%-root' for key 'PRIMARY'

解决办法

不用管他,使用flush privileges;刷新一下权限就可

忘记数据库密码教程:https://blog.csdn.net/m0_70556273/article/details/126490767

bug3

报错信息

ssh: connect to host master port 22: No route to host

报错原因

可能是防火墙或者网络的问题,但是我的防火墙是关闭了的,然后发现是vi /etc/hosts配置的ip有问题

解决办法

修改成正确的host配置即可

bug4

报错信息

在使用自动化部署脚本的时候发现hive和spark起不来,一直报错

报错原因

通过free -h查看后发现是内存不够,这里主要是缓存占的内存太多了,动不动就是3G以上,导致可用内存只有几百Mb,最后导致这两个服务没办法跑起来,然后把虚拟机的内存调到8G后,发现还是跑不起来,后来发现缓存就占了3个G以上,reboot重启虚拟机清空缓存,然后一个个的用下面的命令去手动启动才勉强跑起来

解决办法

cd /usr/lib/python2.7/site-packages/deployment*-py2.7.egg/deployment/hadoop/
python manager_hadoop.py-----------------------------------------------------------------------------------------------
restart_all    重启所有Hadoop相关组件,包括重启 Hadoop、Hive、Spark、Hbase、Phoenix-QueryServer
stop_all       停止所有Hadoop相关组件,包括停止 Hadoop、Hive、Spark、Hbase、Phoenix-QueryServer
start_all      启动所有Hadoop相关组件,包括启动 Hadoop、Hive、Spark、Hbase、Phoenix-QueryServer
start_hadoop   启动Hadoop,包括启动 Hdfs、Yarn、JobHistoryServer
stop_hadoop    停止Hadoop,包括停止 Hdfs、Yarn、JobHistoryServer
start_hive     启动Hive,包括启动 Hive元数据服务、HiveServer2
stop_hive      停止Hive所有相关进程,包括停止 Hive元数据服务、HiveServer2、Hive客户端连接等
start_spark    启动Spark,包括启动 Master、Worker
stop_spark     停止Spark,包括停止 Master、Worker
start_hbase    启动Hbase,包括启动 HMaster、HRegionServer
stop_hbase     停止Hbase,包括停止 HMaster、HRegionServer
start_phoenix_queryserver    启动Phoenix的QueryServer,用于支持瘦客户端连接方式
stop_phoenix_queryserver     停止Phoenix的QueryServer
help           使用帮助
------------------------------python manager_hadoop.py stop_all

Hadoop学习总结

  • 本次在部署Hadoop时采用的是自动化脚本部署,一开始以为几分钟就可以弄好,后面发现在跑脚本的时候各种各样的错误,特别是内存导致的问题,我开三台服务,每台8G运行内存都不够用,跑了n次,通常都是跑到最后内存不足导致spark和hive安装失败,后面发现是缓存占得内存太多了,这里我不能理解为什么缓存动不动就是好几G内存,稍微不注意内存就满了,在这里我花费了大量的时间来排查和重新部署

  • 在部署成功后通过大数据平台来实现测试hive数据库是否可用,把mysql的数据和hive数据库的数据互相进行跑批量同步,测试都没有问题,这里要注意在使用大数据平台的时候是不能直接连接虚拟机里的hive数据库的,需要做端口转发同时还要关闭防火墙才可以成功连接

  • 在部署成功的过程中接触了很多陌生的技术概念,特别是hive、spark、hbase这些技术栈,完全不认识,由于时间有限,目前只额外的去了解了hive技术栈,当然也没有很深入的去了解,了解了hive的定义、架构、优缺点、常用命令等等,剩下的技术栈在本周末进行了解

  • 目前学习主要是对常见的技术栈进行简单了解,最起码要知道这些技术栈是干什么的?有什么优势?架构是什么?然后在后续抽空系统的、深入的去学习这些框架,最后通过实战来加深对这些框架的理解,目前的学习计划和思路就是这样,一口吃不成个大胖子,学习要循环渐进,而不是一气呵成!整个学习过程中将伴随着尽可能的详细笔记,笔记越多越好,这样后续方便我复习看。

相关文章:

Hadoop小结

Hadoop是什么Hadoop是一 个由Apache基金 会所开发的分布式系统基础架构。主要解决,海量数据的存储和海量数据的分析计算问题。广义上来说&#xff0c;Hadoop通 常是指一个更广泛的概念一Hadoop 生态圈。Hadoop优势Hadoop组成HDFS架构Hadoop Distributed File System&#xff0c…...

经典卷积模型回顾14—vgg16实现图像分类(tensorflow)

VGG16是由牛津大学计算机视觉小组&#xff08;Visual Geometry Group&#xff09;开发的深度卷积神经网络模型。其结构由16层组成&#xff0c;其中13层是卷积层&#xff0c;3层是全连接层。 VGG16被广泛应用于各种计算机视觉任务&#xff0c;如图像分类、目标检测和人脸识别等。…...

#Vue2篇:keep-alive的属性和方法

定义 keep-alive 组件是 Vue.js 内置的一个高阶组件&#xff0c;用于缓存其子组件&#xff0c;以提高组件的性能和响应速度。 除了基本用法之外&#xff0c;它还提供了一些属性和方法&#xff0c;以便更好地控制缓存的组件。 属性 include属性用于指定哪些组件应该被缓存&a…...

webpack指南(项目篇)——webpack在项目中的运用

系列文章目录 webpack指南&#xff08;基础篇&#xff09;——手把手教你配置webpack webpack指南&#xff08;优化篇&#xff09;——webpack项目优化 文章目录系列文章目录前言一、配置拆分二、修改启动命令三、定义环境变量四、配置路径别名总结前言 前面我们对webpack的基…...

unicode字符集与utf-8编码的区别,unicode转中文工具、中文转unicode工具(汉字)

在cw上报的报警信息中&#xff0c;有一个name字段的值是\u4eba\u4f53 不知道是啥&#xff0c;查了一下&#xff0c;是unicode编码&#xff0c;用下面工具转换成汉字就是“人体” 参考文章&#xff1a;https://tool.chinaz.com/tools/unicode.aspx 那么我很好奇&#xff0c;uni…...

3D数学系列之——再谈特卡洛积分和重要性采样

目录一、前篇文章回顾二、积分的黎曼和形式三、积分的概率形式&#xff08;蒙特卡洛积分&#xff09;四、误差五、蒙特卡洛积分计算与收敛速度六、重要性采样七、重要性采样方法和过程八、重要性采样的优缺点一、前篇文章回顾 在前一篇文章3D数学系列之——从“蒙的挺准”到“蒙…...

Python错误 TypeError: ‘NoneType‘ object is not subscriptable解决方案汇总

目录前言一、引发错误来源二、解决方案2-1、解决方案一&#xff08;检查变量&#xff09;2-2、解决方案二&#xff08;使用 [] 而不是 None&#xff09;2-3、解决方案三&#xff08;设置默认值&#xff09;2-4、解决方案四&#xff08;使用异常处理&#xff09;2-5、解决方案五…...

VMware空间不足又无法删除快照的解决办法

如果因为快照删除半路取消或者失败&#xff0c;快照管理器就不再显示这个快照&#xff0c;但是其占用的空间还在&#xff0c;最终导致硬盘不足。 可以百度到解决方案&#xff0c;就是在快照管理器&#xff0c;先新建一个&#xff0c;再点删除&#xff0c;等待删除完成就可以将…...

类和对象(一)

类和对象&#xff08;一&#xff09; C并不是纯面向对象语言 C是面向过程和面向对象语言的&#xff01; 面向过程和面向对象初步认识&#xff1a; C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。 C是基…...

Java 不同路径

不同路径中等一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。问总共有多少条不同的路径&#xff1f…...

【SAP PO】X-DOC:SAP PO 接口配置 REST 服务对接填坑记

X-DOC&#xff1a;SAP PO 接口配置 REST 服务对接填坑记1、背景2、PO SLD配置3、PO https证书导入1、背景 &#xff08;1&#xff09;需求背景&#xff1a; SAP中BOM频繁变更&#xff0c;技术人员在对BOM进行变更后&#xff0c;希望及时通知到相关使用人员 &#xff08;2&…...

最新研究!美国爱荷华州立大学利用量子计算模拟原子核

爱荷华州立大学物理学和天文学教授James Vary&#xff08;图片来源&#xff1a;网络&#xff09;美国爱荷华州立大学物理学和天文学教授James Vary和来自爱荷华州立大学、马萨诸塞州塔夫茨大学&#xff0c;以及美国能源部加利福尼亚州劳伦斯伯克利国家实验室的研究人员&#xf…...

零入门kubernetes网络实战-22->基于tun设备实现在用户空间可以ping通外部节点(golang版本)

《零入门kubernetes网络实战》视频专栏地址 https://www.ixigua.com/7193641905282875942 本篇文章视频地址(稍后上传) 本篇文章主要是想做一个测试&#xff1a; 实现的目的是 希望在宿主机-1上&#xff0c;在用户空间里使用ping命令发起ping请求&#xff0c;产生的icmp类型的…...

web安全——Mybatis防止SQL注入 ssrf漏洞利用 DNS污染同源策略

目录 0x01 Mybatis防止SQL注入 0x02 sqlmap中报错注入判断 0x03 ssrf漏洞利用 0x04 SSRF重绑定 0x05 DNS污染...

smp_init过程解析

当你看到这样的log&#xff0c;会不会很慌张&#xff1f;竟然由CPU没有启动成功&#xff0c;除了什么故障&#xff1f;本文将结合我遇到的一个问题&#xff0c;将启动过程中bringup secondary cpu的过程分析一下。smp_init代码如下&#xff1a;602 void __init smp_init(void) …...

判断推理之逻辑判断

考点一翻译推理&#xff08;一&#xff09;题目特征题干或选项中出现多组“逻辑关联词”&#xff0c;如&#xff1a;“如果……那么……”、“只要……就……”、“只有……才……”、“所有”、“有些”、“……且……”、“ ……或……”等典型逻辑关联词。&#xff08;二&am…...

2023金三银四常见Handler面试总结,附带答案

以下的Handler的面试题都是在面试过程中总结出来比较常见的面试题&#xff0c;现在分享给大家&#xff0c;希望可以帮助你们&#xff01;1.Handler的实现原理从四个方面看Handler、Message、MessageQueue 和 Looper Handler:负责消息的发送和处理 Message:消息对象&#xff0c;…...

为什么机器人操作系统ROS1、ROS2这么难学

AI回复&#xff1a;ROS1、ROS2是机器人操作系统&#xff0c;涉及到很多复杂的概念和技术&#xff0c;需要有一定的编程和机器人知识基础才能学习。此外&#xff0c;ROS1和ROS2的架构和设计也有很大的不同&#xff0c;需要花费一定的时间和精力去学习和适应。但是&#xff0c;一…...

day01

授课老师 &#xff1a;陶国荣 联系方式 &#xff1a; taogrtedu.cn 授课阶段 &#xff1a; Web前端基础 授课内容 &#xff1a; HTML CSS JavaScript 文章目录一、讲师和课程介绍二、Web前端介绍1. 什么是网页2. 网页的组成3. 网页的优势4. 开发前的准备三、 HTML语法介绍…...

第四十章 linux-并发解决方法五(顺序锁seqlock)

第四十章 linux-并发解决方法四&#xff08;顺序锁seqlock&#xff09; 文章目录第四十章 linux-并发解决方法四&#xff08;顺序锁seqlock&#xff09;顺序锁的设计思想是&#xff0c;对某一共享数据读取时不加锁&#xff0c;写的时候加锁。为了保证读取的过程中不会因为写入名…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...

电脑桌面太单调,用Python写一个桌面小宠物应用。

下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡&#xff0c;可以响应鼠标点击&#xff0c;并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...

shell脚本质数判断

shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数&#xff09;shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数&#xff09; 思路&#xff1a; 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...